587 research outputs found

    Context-Aware Recommendation Systems in Mobile Environments

    Get PDF
    Nowadays, the huge amount of information available may easily overwhelm users when they need to take a decision that involves choosing among several options. As a solution to this problem, Recommendation Systems (RS) have emerged to offer relevant items to users. The main goal of these systems is to recommend certain items based on user preferences. Unfortunately, traditional recommendation systems do not consider the user’s context as an important dimension to ensure high-quality recommendations. Motivated by the need to incorporate contextual information during the recommendation process, Context-Aware Recommendation Systems (CARS) have emerged. However, these recent recommendation systems are not designed with mobile users in mind, where the context and the movements of the users and items may be important factors to consider when deciding which items should be recommended. Therefore, context-aware recommendation models should be able to effectively and efficiently exploit the dynamic context of the mobile user in order to offer her/him suitable recommendations and keep them up-to-date.The research area of this thesis belongs to the fields of context-aware recommendation systems and mobile computing. We focus on the following scientific problem: how could we facilitate the development of context-aware recommendation systems in mobile environments to provide users with relevant recommendations? This work is motivated by the lack of generic and flexible context-aware recommendation frameworks that consider aspects related to mobile users and mobile computing. In order to solve the identified problem, we pursue the following general goal: the design and implementation of a context-aware recommendation framework for mobile computing environments that facilitates the development of context-aware recommendation applications for mobile users. In the thesis, we contribute to bridge the gap not only between recommendation systems and context-aware computing, but also between CARS and mobile computing.<br /

    Low-rank and sparse matrix factorization for scientific paper recommendation in heterogeneous network

    Full text link
    © 2013 IEEE. With the rapid growth of scientific publications, it is hard for researchers to acquire appropriate papers that meet their expectations. Recommendation system for scientific articles is an essential technology to overcome this problem. In this paper, we propose a novel low-rank and sparse matrix factorization-based paper recommendation (LSMFPRec) method for authors. The proposed method seamlessly combines low-rank and sparse matrix factorization method with fine-grained paper and author affinity matrixes that are extracted from heterogeneous scientific network. Thus, it can effectively alleviate the sparsity and cold start problems that exist in traditional matrix factorization based collaborative filtering methods. Moreover, LSMFPRec can significantly reduce the error propagated from intermediate outputs. In addition, the proposed method essentially captures the low-rank and sparse characteristics that exist in scientific rating activities; therefore, it can generate more reasonable predicted ratings for influential and uninfluential papers. The effectiveness of the proposed LSMFPRec is demonstrated by the recommendation evaluation conducted on the AAN and CiteULike data sets

    CFMT: a collaborative filtering approach based on the nonnegative matrix factorization technique and trust relationships

    Get PDF
    peer reviewedAs a method of information filtering, the Recommender System (RS) has gained considerable popularity because of its efficiency and provision of the most superior numbers of useful items. A recommender system is a proposed solution to the information overload problem in social media and algorithms. Collaborative Filtering (CF) is a practical approach to the recommendation; however, it is characterized by cold start and data sparsity, the most severe barriers against providing accurate recommendations. Rating matrices are finely represented by Nonnegative Matrix Factorization (NMF) models, fundamental models in CF-based RSs. However, most NMF methods do not provide reasonable accuracy due to the dispersion of the rating matrix. As a result of the sparsity of data and problems concerning the cold start, information on the trust network among users is further utilized to elevate RS performance. Therefore, this study suggests a novel trust-based matrix factorization technique referred to as CFMT, which uses the social network data in the recommendation process by modeling user’s roles as trustees and trusters, given the trust network’s structural information. The proposed method seeks to lower the sparsity of the data and the cold start problem by integrating information sources including ratings and trust statements into the recommendation model, an attempt by which significant superiority over state-of-the-art approaches is demonstrated an empirical examination of real-world datasets

    Scalable statistical learning for relation prediction on structured data

    Get PDF
    Relation prediction seeks to predict unknown but potentially true relations by revealing missing relations in available data, by predicting future events based on historical data, and by making predicted relations retrievable by query. The approach developed in this thesis can be used for a wide variety of purposes, including to predict likely new friends on social networks, attractive points of interest for an individual visiting an unfamiliar city, and associations between genes and particular diseases. In recent years, relation prediction has attracted significant interest in both research and application domains, partially due to the increasing volume of published structured data and background knowledge. In the Linked Open Data initiative of the Semantic Web, for instance, entities are uniquely identified such that the published information can be integrated into applications and services, and the rapid increase in the availability of such structured data creates excellent opportunities as well as challenges for relation prediction. This thesis focuses on the prediction of potential relations by exploiting regularities in data using statistical relational learning algorithms and applying these methods to relational knowledge bases, in particular in Linked Open Data in particular. We review representative statistical relational learning approaches, e.g., Inductive Logic Programming and Probabilistic Relational Models. While logic-based reasoning can infer and include new relations via deduction by using ontologies, machine learning can be exploited to predict new relations (with some degree of certainty) via induction, purely based on the data. Because the application of machine learning approaches to relation prediction usually requires handling large datasets, we also discuss the scalability of machine learning as a solution to relation prediction, as well as the significant challenge posed by incomplete relational data (such as social network data, which is often much more extensive for some users than others). The main contribution of this thesis is to develop a learning framework called the Statistical Unit Node Set (SUNS) and to propose a multivariate prediction approach used in the framework. We argue that multivariate prediction approaches are most suitable for dealing with large, sparse data matrices. According to the characteristics and intended application of the data, the approach can be extended in different ways. We discuss and test two extensions of the approach--kernelization and a probabilistic method of handling complex n-ary relationships--in empirical studies based on real-world data sets. Additionally, this thesis contributes to the field of relation prediction by applying the SUNS framework to various domains. We focus on three applications: 1. In social network analysis, we present a combined approach of inductive and deductive reasoning for recommending movies to users. 2. In the life sciences, we address the disease gene prioritization problem. 3. In the recommendation system, we describe and investigate the back-end of a mobile app called BOTTARI, which provides personalized location-based recommendations of restaurants.Die Beziehungsvorhersage strebt an, unbekannte aber potenziell wahre Beziehungen vorherzusagen, indem fehlende Relationen in verfügbaren Daten aufgedeckt, zukünftige Ereignisse auf der Grundlage historischer Daten prognostiziert und vorhergesagte Relationen durch Anfragen abrufbar gemacht werden. Der in dieser Arbeit entwickelte Ansatz lässt sich für eine Vielzahl von Zwecken einschließlich der Vorhersage wahrscheinlicher neuer Freunde in sozialen Netzen, der Empfehlung attraktiver Sehenswürdigkeiten für Touristen in fremden Städten und der Priorisierung möglicher Assoziationen zwischen Genen und bestimmten Krankheiten, verwenden. In den letzten Jahren hat die Beziehungsvorhersage sowohl in Forschungs- als auch in Anwendungsbereichen eine enorme Aufmerksamkeit erregt, aufgrund des Zuwachses veröffentlichter strukturierter Daten und von Hintergrundwissen. In der Linked Open Data-Initiative des Semantischen Web werden beispielsweise Entitäten eindeutig identifiziert, sodass die veröffentlichten Informationen in Anwendungen und Dienste integriert werden können. Diese rapide Erhöhung der Verfügbarkeit strukturierter Daten bietet hervorragende Gelegenheiten sowie Herausforderungen für die Beziehungsvorhersage. Diese Arbeit fokussiert sich auf die Vorhersage potenzieller Beziehungen durch Ausnutzung von Regelmäßigkeiten in Daten unter der Verwendung statistischer relationaler Lernalgorithmen und durch Einsatz dieser Methoden in relationale Wissensbasen, insbesondere in den Linked Open Daten. Wir geben einen Überblick über repräsentative statistische relationale Lernansätze, z.B. die Induktive Logikprogrammierung und Probabilistische Relationale Modelle. Während das logikbasierte Reasoning neue Beziehungen unter der Nutzung von Ontologien ableiten und diese einbeziehen kann, kann maschinelles Lernen neue Beziehungen (mit gewisser Wahrscheinlichkeit) durch Induktion ausschließlich auf der Basis der vorliegenden Daten vorhersagen. Da die Verarbeitung von massiven Datenmengen in der Regel erforderlich ist, wenn maschinelle Lernmethoden in die Beziehungsvorhersage eingesetzt werden, diskutieren wir auch die Skalierbarkeit des maschinellen Lernens sowie die erhebliche Herausforderung, die sich aus unvollständigen relationalen Daten ergibt (z. B. Daten aus sozialen Netzen, die oft für manche Benutzer wesentlich umfangreicher sind als für Anderen). Der Hauptbeitrag der vorliegenden Arbeit besteht darin, ein Lernframework namens Statistical Unit Node Set (SUNS) zu entwickeln und einen im Framework angewendeten multivariaten Prädiktionsansatz einzubringen. Wir argumentieren, dass multivariate Vorhersageansätze am besten für die Bearbeitung von großen und dünnbesetzten Datenmatrizen geeignet sind. Je nach den Eigenschaften und der beabsichtigten Anwendung der Daten kann der Ansatz auf verschiedene Weise erweitert werden. In empirischen Studien werden zwei Erweiterungen des Ansatzes--ein kernelisierter Ansatz sowie ein probabilistischer Ansatz zur Behandlung komplexer n-stelliger Beziehungen-- diskutiert und auf realen Datensätzen untersucht. Ein weiterer Beitrag dieser Arbeit ist die Anwendung des SUNS Frameworks auf verschiedene Bereiche. Wir konzentrieren uns auf drei Anwendungen: 1. In der Analyse sozialer Netze stellen wir einen kombinierten Ansatz von induktivem und deduktivem Reasoning vor, um Benutzern Filme zu empfehlen. 2. In den Biowissenschaften befassen wir uns mit dem Problem der Priorisierung von Krankheitsgenen. 3. In den Empfehlungssystemen beschreiben und untersuchen wir das Backend einer mobilen App "BOTTARI", das personalisierte ortsbezogene Empfehlungen von Restaurants bietet

    Deep Learning for Recommender Systems

    Get PDF
    The widespread adoption of the Internet has led to an explosion in the number of choices available to consumers. Users begin to expect personalized content in modern E-commerce, entertainment and social media platforms. Recommender Systems (RS) provide a critical solution to this problem by maintaining user engagement and satisfaction with personalized content. Traditional RS techniques are often linear limiting the expressivity required to model complex user-item interactions and require extensive handcrafted features from domain experts. Deep learning demonstrated significant breakthroughs in solving problems that have alluded the artificial intelligence community for many years advancing state-of-the-art results in domains such as computer vision and natural language processing. The recommender domain consists of heterogeneous and semantically rich data such as unstructured text (e.g. product descriptions), categorical attributes (e.g. genre of a movie), and user-item feedback (e.g. purchases). Deep learning can automatically capture the intricate structure of user preferences by encoding learned feature representations from high dimensional data. In this thesis, we explore five novel applications of deep learning-based techniques to address top-n recommendation. First, we propose Collaborative Memory Network, which unifies the strengths of the latent factor model and neighborhood-based methods inspired by Memory Networks to address collaborative filtering with implicit feedback. Second, we propose Neural Semantic Personalized Ranking, a novel probabilistic generative modeling approach to integrate deep neural network with pairwise ranking for the item cold-start problem. Third, we propose Attentive Contextual Denoising Autoencoder augmented with a context-driven attention mechanism to integrate arbitrary user and item attributes. Fourth, we propose a flexible encoder-decoder architecture called Neural Citation Network, embodying a powerful max time delay neural network encoder augmented with an attention mechanism and author networks to address context-aware citation recommendation. Finally, we propose a generic framework to perform conversational movie recommendations which leverages transfer learning to infer user preferences from natural language. Comprehensive experiments validate the effectiveness of all five proposed models against competitive baseline methods and demonstrate the successful adaptation of deep learning-based techniques to the recommendation domain
    corecore