41,149 research outputs found

    Orally active antischistosomal early leads identified from the open access malaria box.

    Get PDF
    BACKGROUND: Worldwide hundreds of millions of schistosomiasis patients rely on treatment with a single drug, praziquantel. Therapeutic limitations and the threat of praziquantel resistance underline the need to discover and develop next generation drugs. METHODOLOGY: We studied the antischistosomal properties of the Medicines for Malaria Venture (MMV) malaria box containing 200 diverse drug-like and 200 probe-like compounds with confirmed in vitro activity against Plasmodium falciparum. Compounds were tested against schistosomula and adult Schistosoma mansoni in vitro. Based on in vitro performance, available pharmacokinetic profiles and toxicity data, selected compounds were investigated in vivo. PRINCIPAL FINDINGS: Promising antischistosomal activity (IC50: 1.4-9.5 Β΅M) was observed for 34 compounds against schistosomula. Three compounds presented IC50 values between 0.8 and 1.3 Β΅M against adult S. mansoni. Two promising early leads were identified, namely a N,N'-diarylurea and a 2,3-dianilinoquinoxaline. Treatment of S. mansoni infected mice with a single oral 400 mg/kg dose of these drugs resulted in significant worm burden reductions of 52.5% and 40.8%, respectively. CONCLUSIONS/SIGNIFICANCE: The two candidates identified by investigating the MMV malaria box are characterized by good pharmacokinetic profiles, low cytotoxic potential and easy chemistry and therefore offer an excellent starting point for antischistosomal drug discovery and development

    Enhanced flight performance by genetic manipulation of wing shape in Drosophila

    Get PDF
    Insect wing shapes are remarkably diverse and the combination of shape and kinematics determines both aerial capabilities and power requirements. However, the contribution of any specific morphological feature to performance is not known. Using targeted RNA interference to modify wing shape far beyond the natural variation found within the population of a single species, we show a direct effect on flight performance that can be explained by physical modelling of the novel wing geometry. Our data show that altering the expression of a single gene can significantly enhance aerial agility and that the Drosophila wing shape is not, therefore, optimized for certain flight performance characteristics that are known to be important. Our technique points in a new direction for experiments on the evolution of performance specialities in animals

    Automatic landmark annotation and dense correspondence registration for 3D human facial images

    Full text link
    Dense surface registration of three-dimensional (3D) human facial images holds great potential for studies of human trait diversity, disease genetics, and forensics. Non-rigid registration is particularly useful for establishing dense anatomical correspondences between faces. Here we describe a novel non-rigid registration method for fully automatic 3D facial image mapping. This method comprises two steps: first, seventeen facial landmarks are automatically annotated, mainly via PCA-based feature recognition following 3D-to-2D data transformation. Second, an efficient thin-plate spline (TPS) protocol is used to establish the dense anatomical correspondence between facial images, under the guidance of the predefined landmarks. We demonstrate that this method is robust and highly accurate, even for different ethnicities. The average face is calculated for individuals of Han Chinese and Uyghur origins. While fully automatic and computationally efficient, this method enables high-throughput analysis of human facial feature variation.Comment: 33 pages, 6 figures, 1 tabl

    Paenibacillus brasilensis sp nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil

    Get PDF
    Sixteen nitrogen-fixing strains isolated from the rhizosphere of maize planted in Cerrado soil, Brazil, which showed morphological and biochemical characteristics similar to the gas-forming Paenibacillus spp., were phenotypically and genetically characterized. Their identification as members of the genus Paenibacillus was confirmed by using specific primers based on the 16S rRNA gene. SDS-PAGE of whole-cell proteins, API 50CH, morphological and biochemical tests, amplified rDNA-restriction analysis (ARDRA), DNA-relatedness analyses, denaturing-gradient gel electrophoresis (DGGE) and 16S rRNA gene sequence determinations were performed to characterize the novel isolates and to compare them to strains of other nitrogen-fixing Paenibacillus spp. Phenotypic analyses showed that the 16 strains were very homogeneous and shared a high level of relatedness with Paenibacillus polymyxa and Paenibacillus peoriae. However, none of the novel isolates was able to ferment glycerol (positive test for P. polymyxa), L-arabinose or D-xylose (positive tests for P. polymyxa and P. peoriae) or utilize succinate (positive test for P. peoriae). Genetic approaches also indicated a high level of similarity among the novel isolates and P. polymyxa and P. peoriae, but the novel strains clearly could not be assigned to either of these two recognized species. On the basis of the features presented in this study, the 16 novel isolates were considered to represent members of a novel species within the genus Paenibacillus, for which the name Paenibacillus brasilensis is proposed. The type strain is PB172(T) (=ATCC BAA-413(T)=DSM 14914(T)

    Evaluation of Nordic heritage varieties and NILs for resistance to common bunt (Tilletia caries syn. T.tritici)

    Get PDF
    A number og wheat varieties from NordGen and Allkorn were tested fro susceptibility to common bunt. Most were susceptible to common bunt which is in line with other screening experiments of randomly selected varieties. However, a few lines not previously known to be resistant were shown to have different resistance genes. None of them however were resistant to all the virulence races tested. NILs developed by MacKey were evaluated and there seem to be a potential for using some of them as differential lines for resistance gene Bt1, Bt5, and Bt9. Purification based on resistant head rows may also develop NILs with resistance to Bt6 and Bt10 and possible also Bt7 from NGB16160. A crossing program of the remaining Bt-genes was started in 2016. The NILs may be used also to support development of genetic markers of the resistance genes
    • …
    corecore