681 research outputs found

    A novel 16-channel wireless system for electroencephalography measurements with dry spring-loaded sensors

    Full text link
    Understanding brain function using electroencephalography (EEG) is an important issue for cerebral nervous system diseases, especially for epilepsy and Alzheimer's disease. Many EEG measurement systems are used reliably to study these diseases, but their bulky size and the use of wet sensors make them uncomfortable and inconvenient for users. To overcome the limitations of conventional EEG measurement systems, a wireless and wearable multichannel EEG measurement system is proposed in this paper. This system includes a wireless data acquisition device, dry spring-loaded sensors, and a sizeadjustable soft cap. We compared the performance of the proposed system using dry versus conventional wet sensors. A significant positive correlation between readings from wet and dry sensors was achieved, thus demonstrating the performance of the system. Moreover, four different features of EEG signals (i.e., normal, eye-blinking, closed-eyes, and teeth-clenching signals) were measured by 16 dry sensors to ensure that they could be detected in real-life cognitive neuroscience applications. Thus, we have shown that it is possible to reliably measure EEG signals using the proposed system. This paper presents novel insights into the field of cognitive neuroscience, showing the possibility of studying brain function under real-life conditions. © 2014 IEEE

    An inflatable and wearable wireless system for making 32-channel electroencephalogram measurements

    Full text link
    © 2001-2011 IEEE. Potable electroencephalography (EEG) devices have become critical for important research. They have various applications, such as in brain-computer interfaces (BCI). Numerous recent investigations have focused on the development of dry sensors, but few concern the simultaneous attachment of high-density dry sensors to different regions of the scalp to receive qualified EEG signals from hairy sites. An inflatable and wearable wireless 32-channel EEG device was designed, prototyped, and experimentally validated for making EEG signal measurements; it incorporates spring-loaded dry sensors and a novel gasbag design to solve the problem of interference by hair. The cap is ventilated and incorporates a circuit board and battery with a high-tolerance wireless (Bluetooth) protocol and low power consumption characteristics. The proposed system provides a 500/250 Hz sampling rate, and 24 bit EEG data to meet the BCI system data requirement. Experimental results prove that the proposed EEG system is effective in measuring audio event-related potential, measuring visual event-related potential, and rapid serial visual presentation. Results of this work demonstrate that the proposed EEG cap system performs well in making EEG measurements and is feasible for practical applications

    The impact of vigorous cycling exercise on visual attention: a study with the BR8 wireless dry EEG system

    Get PDF
    Many studies have reported that exercise can influence cognitive performance. But advancing our understanding of the interrelations between psychology and physiology in sports neuroscience requires the study of real-time brain dynamics during exercise in the field. Electroencephalography (EEG) is one of the most powerful brain imaging technologies. However, the limited portability and long preparation time of traditional wet-sensor systems largely limits their use to laboratory settings. Wireless dry-sensor systems are emerging with much greater potential for practical application in sports. Hence, in this paper, we use the BR8 wireless dry-sensor EEG system to measure P300 brain dynamics while cycling at various intensities. The preparation time was mostly less than 2 min as BR8 system’s dry sensors were able to attain the required skin-sensor interface impedance, enabling its operation without any skin preparation or application of conductive gel. Ten participants performed four sessions of a 3 min rapid serial visual presentation (RSVP) task while resting and while cycling. These four sessions were pre-CE (RSVP only), low-CE (RSVP in 40–50% of max heart rate), vigorous-CE (RSVP in 71–85% of max heart rate) and post-CE (RSVP only). The recorded brain signals demonstrate that the P300 amplitudes, observed at the Pz channel, for the target and non-target responses were significantly different in all four sessions. The results also show decreased reaction times to the visual attention task during vigorous exercise, enriching our understanding of the ways in which exercise can enhance cognitive performance. Even though only a single channel was evaluated in this study, the quality and reliability of the measurement using these dry sensor-based EEG systems is clearly demonstrated by our results. Further, the smooth implementation of the experiment with a dry system and the success of the data analysis demonstrate that wireless dry EEG devices can open avenues for real-time measurement of cognitive functions in athletes outside the laboratory

    The Arch electrode: a novel dry electrode concept for improved wearing comfort

    Get PDF
    Electroencephalography (EEG) is increasingly used for repetitive and prolonged applications like neurofeedback, brain computer interfacing, and long-term intermittent monitoring. Dry-contact electrodes enable rapid self-application. A common drawback of existing dry electrodes is the limited wearing comfort during prolonged application. We propose a novel dry Arch electrode. Five semi-circular arches are arranged parallelly on a common baseplate. The electrode substrate material is a flexible thermoplastic polyurethane (TPU) produced by additive manufacturing. A chemical coating of Silver/Silver-Chloride (Ag/AgCl) is applied by electroless plating using a novel surface functionalization method. Arch electrodes were manufactured and validated in terms of mechanical durability, electrochemical stability, in vivo applicability, and signal characteristics. We compare the results of the dry arch electrodes with dry pin-shaped and conventional gel-based electrodes. 21-channel EEG recordings were acquired on 10 male and 5 female volunteers. The tests included resting state EEG, alpha activity, and a visual evoked potential. Wearing comfort was rated by the subjects directly after application, as well as at 30 min and 60 min of wearing. Our results show that the novel plating technique provides a well-adhering electrically conductive and electrochemically stable coating, withstanding repetitive strain and bending tests. The signal quality of the Arch electrodes is comparable to pin-shaped dry electrodes. The average channel reliability of the Arch electrode setup was 91.9 ± 9.5%. No considerable differences in signal characteristics have been observed for the gel-based, dry pin-shaped, and arch-shaped electrodes after the identification and exclusion of bad channels. The comfort was improved in comparison to pin-shaped electrodes and enabled applications of over 60 min duration. Arch electrodes required individual adaptation of the electrodes to the orientation and hairstyle of the volunteers. This initial preparation time of the 21-channel cap increased from an average of 5 min for pin-like electrodes to 15 min for Arch electrodes and 22 min for gel-based electrodes. However, when re-applying the arch electrode cap on the same volunteer, preparation times of pin-shaped and arch-shaped electrodes were comparable. In summary, our results indicate the applicability of the novel Arch electrode and coating for EEG acquisition. The novel electrode enables increased comfort for prolonged dry-contact measurement

    Wearable, Multimodal, Biosignal Acquisition System for Potential Critical and Emergency Applications

    Full text link
    For emergency or intensive-care units (ICUs), patients with unclear consciousness or unstable hemodynamics often require aggressive monitoring by multiple monitors. Complicated pipelines or lines increase the burden on patients and inconvenience for medical personnel. Currently, many commercial devices provide related functionalities. However, most devices measure only one biological signal, which can increase the budget for users and cause difficulty in remote integration. In this study, we develop a wearable device that integrates electrocardiography (ECG), electroencephalography (EEG), and blood oxygen machines for medical applications with the hope that it can be applied in the future. We develop an integrated multiple-biosignal recording system based on a modular design. The developed system monitors and records EEG, ECG, and peripheral oxygen saturation (SpO2) signals for health purposes simultaneously in a single setting. We use a logic level converter to connect the developed EEG module (BR8), ECG module, and SpO2 module to a microcontroller (Arduino). The modular data are then smoothly encoded and decoded through consistent overhead byte stuffing (COBS). This developed system has passed simulation tests and exhibited proper functioning of all modules and subsystems. In the future, the functionalities of the proposed system can be expanded with additional modules to support various emergency or ICU applications

    Review of Wireless Brain-Computer Interface Systems

    Get PDF

    Polypyrrole (PPy) Coated Patterned Vertical Carbon Nanotube (pvCNT) Dry ECG Electrode Integrated with a Novel Wireless Resistive Analog Passive (WRAP) ECG Sensor

    Get PDF
    Polypyrrole (PPy) Coated Patterned Vertical Carbon Nanotube (pvCNT) Dry ECG Electrode Integrated with a Novel Wireless Resistive Analog Passive (WRAP) ECG Senso

    A motor imagery based brain-computer interface system via swarm-optimized fuzzy integral and its application

    Full text link
    © 2016 IEEE. A brain-computer interface (BCI) system provides a convenient means of communication between the human brain and a computer, which is applied not only to healthy people but also for people that suffer from motor neuron diseases (MNDs). Motor imagery (MI) is one well-known basis for designing Electroencephalography (EEG)-based real-life BCI systems. However, EEG signals are often contaminated with severe noise and various uncertainties, imprecise and incomplete information streams. Therefore, this study proposes spectrum ensemble based on swam-optimized fuzzy integral for integrating decisions from sub-band classifiers that are established by a sub-band common spatial pattern (SBCSP) method. Firstly, the SBCSP effectively extracts features from EEG signals, and thereby the multiple linear discriminant analysis (MLDA) is employed during a MI classification task. Subsequently, particle swarm optimization (PSO) is used to regulate the subject-specific parameters for assigning optimal confidence levels for classifiers used in the fuzzy integral during the fuzzy fusion stage of the proposed system. Moreover, BCI systems usually tend to have complex architectures, be bulky in size, and require time-consuming processing. To overcome this drawback, a wireless and wearable EEG measurement system is investigated in this study. Finally, in our experimental result, the proposed system is found to produce significant improvement in terms of the receiver operating characteristic (ROC) curve. Furthermore, we demonstrate that a robotic arm can be reliably controlled using the proposed BCI system. This paper presents novel insights regarding the possibility of using the proposed MI-based BCI system in real-life applications

    Wearable, Integrated EEG-fNIRS Technologies: A Review.

    Get PDF
    There has been considerable interest in applying electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) simultaneously for multimodal assessment of brain function. EEG-fNIRS can provide a comprehensive picture of brain electrical and hemodynamic function and has been applied across various fields of brain science. The development of wearable, mechanically and electrically integrated EEG-fNIRS technology is a critical next step in the evolution of this field. A suitable system design could significantly increase the data/image quality, the wearability, patient/subject comfort, and capability for long-term monitoring. Here, we present a concise, yet comprehensive, review of the progress that has been made toward achieving a wearable, integrated EEG-fNIRS system. Significant marks of progress include the development of both discrete component-based and microchip-based EEG-fNIRS technologies; modular systems; miniaturized, lightweight form factors; wireless capabilities; and shared analogue-to-digital converter (ADC) architecture between fNIRS and EEG data acquisitions. In describing the attributes, advantages, and disadvantages of current technologies, this review aims to provide a roadmap toward the next generation of wearable, integrated EEG-fNIRS systems
    • …
    corecore