2,353 research outputs found

    Regret Minimisation in Multi-Armed Bandits Using Bounded Arm Memory

    Full text link
    In this paper, we propose a constant word (RAM model) algorithm for regret minimisation for both finite and infinite Stochastic Multi-Armed Bandit (MAB) instances. Most of the existing regret minimisation algorithms need to remember the statistics of all the arms they encounter. This may become a problem for the cases where the number of available words of memory is limited. Designing an efficient regret minimisation algorithm that uses a constant number of words has long been interesting to the community. Some early attempts consider the number of arms to be infinite, and require the reward distribution of the arms to belong to some particular family. Recently, for finitely many-armed bandits an explore-then-commit based algorithm~\citep{Liau+PSY:2018} seems to escape such assumption. However, due to the underlying PAC-based elimination their method incurs a high regret. We present a conceptually simple, and efficient algorithm that needs to remember statistics of at most MM arms, and for any KK-armed finite bandit instance it enjoys a O(KM+K1.5Tlog(T/MK)/M)O(KM +K^{1.5}\sqrt{T\log (T/MK)}/M) upper-bound on regret. We extend it to achieve sub-linear \textit{quantile-regret}~\citep{RoyChaudhuri+K:2018} and empirically verify the efficiency of our algorithm via experiments

    Reducing Dueling Bandits to Cardinal Bandits

    Full text link
    We present algorithms for reducing the Dueling Bandits problem to the conventional (stochastic) Multi-Armed Bandits problem. The Dueling Bandits problem is an online model of learning with ordinal feedback of the form "A is preferred to B" (as opposed to cardinal feedback like "A has value 2.5"), giving it wide applicability in learning from implicit user feedback and revealed and stated preferences. In contrast to existing algorithms for the Dueling Bandits problem, our reductions -- named \Doubler, \MultiSbm and \DoubleSbm -- provide a generic schema for translating the extensive body of known results about conventional Multi-Armed Bandit algorithms to the Dueling Bandits setting. For \Doubler and \MultiSbm we prove regret upper bounds in both finite and infinite settings, and conjecture about the performance of \DoubleSbm which empirically outperforms the other two as well as previous algorithms in our experiments. In addition, we provide the first almost optimal regret bound in terms of second order terms, such as the differences between the values of the arms

    Deterministic Sequencing of Exploration and Exploitation for Multi-Armed Bandit Problems

    Full text link
    In the Multi-Armed Bandit (MAB) problem, there is a given set of arms with unknown reward models. At each time, a player selects one arm to play, aiming to maximize the total expected reward over a horizon of length T. An approach based on a Deterministic Sequencing of Exploration and Exploitation (DSEE) is developed for constructing sequential arm selection policies. It is shown that for all light-tailed reward distributions, DSEE achieves the optimal logarithmic order of the regret, where regret is defined as the total expected reward loss against the ideal case with known reward models. For heavy-tailed reward distributions, DSEE achieves O(T^1/p) regret when the moments of the reward distributions exist up to the pth order for 1<p<=2 and O(T^1/(1+p/2)) for p>2. With the knowledge of an upperbound on a finite moment of the heavy-tailed reward distributions, DSEE offers the optimal logarithmic regret order. The proposed DSEE approach complements existing work on MAB by providing corresponding results for general reward distributions. Furthermore, with a clearly defined tunable parameter-the cardinality of the exploration sequence, the DSEE approach is easily extendable to variations of MAB, including MAB with various objectives, decentralized MAB with multiple players and incomplete reward observations under collisions, MAB with unknown Markov dynamics, and combinatorial MAB with dependent arms that often arise in network optimization problems such as the shortest path, the minimum spanning, and the dominating set problems under unknown random weights.Comment: 22 pages, 2 figure

    Bandit Models of Human Behavior: Reward Processing in Mental Disorders

    Full text link
    Drawing an inspiration from behavioral studies of human decision making, we propose here a general parametric framework for multi-armed bandit problem, which extends the standard Thompson Sampling approach to incorporate reward processing biases associated with several neurological and psychiatric conditions, including Parkinson's and Alzheimer's diseases, attention-deficit/hyperactivity disorder (ADHD), addiction, and chronic pain. We demonstrate empirically that the proposed parametric approach can often outperform the baseline Thompson Sampling on a variety of datasets. Moreover, from the behavioral modeling perspective, our parametric framework can be viewed as a first step towards a unifying computational model capturing reward processing abnormalities across multiple mental conditions.Comment: Conference on Artificial General Intelligence, AGI-1
    corecore