6 research outputs found

    Adaptive time-integration for goal-oriented and coupled problems

    Get PDF
    We consider efficient methods for the partitioned time-integration of multiphysics problems, which commonly exhibit a multiscale behavior, requiring independent time-grids. Examples are fluid structure interaction in e.g., the simulation of blood-flow or cooling of rocket engines, or ocean-atmosphere-vegetation interaction. The ideal method for solving these problems allows independent and adaptive time-grids, higher order time-discretizations, is fast and robust, and allows the coupling of existing subsolvers, executed in parallel. We consider Waveform relaxation (WR) methods, which can have all of these properties. WR methods iterate on continuous-in-time interface functions, obtained via suitable interpolation. The difficulty is to find suitable convergence acceleration, which is required for the iteration converge quickly. We develop a fast and highly robust, second order in time, adaptive WR method for unsteady thermal fluid structure interaction (FSI), modelled by heterogeneous coupled linear heat equations. We use a Dirichlet-Neumann coupling at the interface and an analytical optimal relaxation parameter derived for the fully-discrete scheme. While this method is sequential, it is notably faster and more robust than similar parallel methods.We further develop a novel, parallel WR method, using asynchronous communication techniques during time-integration to accelerate convergence. Instead of exchanging interpolated time-dependent functions at the end of each time-window or iteration, we exchange time-point data immediately after each timestep. The analytical description and convergence results of this method generalize existing WR theory.Since WR methods allow coupling of problems in a relative black-box manner, we developed adapters to PDE-subsolvers implemented using DUNE and FEniCS. We demonstrate this coupling in a thermal FSI test case.Lastly, we consider adaptive time-integration for goal-oriented problems, where one is interested in a quantity of interest (QoI), which is a functional of the solution. The state-of-the-art method is the dual-weighted residual (DWR) method, which is extremely costly in both computation and implementation. We develop a goal oriented adaptive method based on local error estimates, which is considerably cheaper in computation. We prove convergence of the error in the QoI for tolerance to zero under a controllability assumption. By analyzing global error propagation with respect to the QoI, we can identify possible issues and make performance predictions. Numerical results verify these results and show our method to be more efficient than the DWR method

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Multiconfiguration methods for the numerical simulation of photoionization processes of many-electron atoms

    Get PDF
    Numerical simulations present an indispensable way to the understanding of physical processes. In quantum mechanics, where the theoretical description is given in terms of the time-dependent Schrödinger equation (TDSE), the road is, however, difficult for any but the simplest systems. This is particularly true if one considers photoionization processes of atoms and mole\-cules, which at the same time require an accurate description of bound and continuum states, and therefore an extensive region of space to be sampled during the calculation. As a consequence, direct simulations of photoionization processes are currently only feasible for systems composed of up to three particles. Despite this fundamental restriction, many physical effects can be essentially described by single- and two-electron models, among them high-order harmonic generation and non-sequential double-ionization of atoms and mole\-cules. A plethora of numerical investigations have been performed on atomic and molecular hydrogen and helium in the last two decades, and these have had a strong impact on the current understanding of photoionization. On the other hand, there are processes which are characterized by the interplay of a larger number of electrons, such as tunnel ionization, the Auger effect, and, to give a more recent example, the temporal delay between the photo-emission of electrons from different shells of neon and krypton. The many-electron character of these effects complicates the accurate, time-resolved simulation, and hence, no universally applicable method exists. The present work develops two theoretical methods which are promising candidates for closing this gap, the multiconfigurational time-dependent Hartree-Fock (MCTDHF) method and the time-dependent restricted active space configuration interaction (TD-RASCI) method. Both represent the wavefunction in a linear subspace of the many-body Hilbert space and follow particular strategies to avoid the exponential problem. This makes it possible to treat a much larger number of electrons than with the direct techniques mentioned previously. The MCTDHF method is already well established in the scientific community, but has been applied only rarely to photoionization processes so far. On the other hand, the TD-RASCI method is an original contribution, and is applied for the first time to solutions of the time-dependent Schrödinger equation. Further, through the invention of appropriate, grid-like single-particle basis sets, we adjust these general approaches to efficiently treat photoionization processes in many-electron atoms and molecules. After their thorough introduction, the MCTDHF and the TD-RASCI method are applied to several topics of photoionization physics. Among them is, first, the problem of calculating cross sections of atoms, for which we particularly consider helium, beryllium and neon. In most parts, this is accomplished for the first time in the framework of the developed methods. Next, we consider the two-photon double-ionization of helium, which has attracted considerable interest in recent years, and perform simulations with the MCTDHF method. We further apply the TD-RASCI method to study two-color pump-probe process in beryllium, the simulation of which requires an explicitly time-dependent treatment. We find that both methods are highly appropriate for accurately describing correlated single-ionization processes. Moreover, the TD-RASCI method is able to model relevant doubly-excited states, which are of central importance for a variety of physical processes.Trotz dieser fundamentalen EinschrĂ€nkung lassen sich viele physikalische Effekte bereits durch Ein- und Zweiteilchenmodelle beschreiben, darunter zum Beispiel die Erzeugung höherer Harmonischer oder die nicht-sequentielle Doppelionisation. In diesem Sinne wurde in den letzten zwei Jahrzehnten eine Vielzahl numerischer Untersuchungen an atomarem und molekularem Wasserstoff sowie Helium unternommen, welche einen starken Einfluss auf das momentane VerstĂ€ndnis von Photoionisations-Prozessen nahmen. Andererseits gibt es jedoch physikalische Effekte, die durch das Zusammenwirken einer grĂ¶ĂŸeren Anzahl von Elektronen gekennzeichnet sind, etwa die Tunnel-Ionisation, der Auger-Effekt oder die kĂŒrzlich entdeckte zeitliche Verzögerung in der Emission von Elektronen aus verschiedenen atomaren Schalen von Neon und Krypton. Der immanente Vielteilchencharakter macht die zeitaufgelöste Simulation dieser Prozesse zu einer schwierigen Aufgabe, fĂŒr die es bisher keine universell einsetzbare und gleichzeitig akkurate Methode gibt. In dieser Arbeit werden zwei theoretische Methoden zur Simulation von Photoionisations-Prozessen von Vielteilchenatomen und -molekĂŒlen vor\-gestellt, die vielversprechende Kandidaten zur Schließung dieser vorhandenen LĂŒcke darstellen, nĂ€mlich die zeitabhĂ€ngige Multikonfigurations-Hartree-Fock (MCTDHF) Methode sowie die zeitabhĂ€ngige restricted-active-space Konfigurations-Wechselwirkungsmethode (TD-RASCI). Beide stellen die quantenmechanische Wellenfunktion in einem linearen Unterraum des Vielteilchen-Hilbertraumes dar und folgen dabei speziellen AnsĂ€tzen um das Problem des exponentiellen Wachstums zu vermeiden. Dadurch kann eine weitaus grĂ¶ĂŸere Teilchenzahl als mit der zuvor erwĂ€hnten direkten Technik simuliert werden. Weiterhin werden diese zunĂ€chst sehr allgemeinen Methoden durch den Gebrauch geeigneter BasissĂ€tze auf die effiziente Beschreibung von Photoionisations-Prozessen optimiert. Nach ihrer EinfĂŒhrung werden die MCTDHF und TD-RASCI Methode auf aktuelle Themen der Photoionisations-Physik angewandt. ZunĂ€chst wenden wir uns der Berechnung von Ionisations-Streuquerschnitten der Atome Helium, Beryllium und Neon zu, welche weitgehend zum ersten Male mithilfe der eingefĂŒhrten Methoden untersucht wird. Des Weiteren studieren wir die Zwei-Photonen-Ionisation von Helium, der in jĂŒngerer Zeit großes theoretisches Interesse zukam, mithilfe von Simulationen mit der MCTDHF Methode. Als grundlegendes Beispiel eines explizit zeitabhĂ€ngigen Prozesses wird darĂŒberhinaus die Pump-Probe Ionisation von Beryllium betrachtet. Unsere Untersuchungen zeigen, dass sowohl die MCTDHF Methode als auch die TD-RASCI Methode die Einelektronen-Photoionisation akkurat zu beschreiben vermag. Mithilfe der TD-RASCI Methode ist es zudem möglich, selektierte doppelt-angeregte ZustĂ€nde in die Rechnung zu integrieren, welche eine zentrale Rolle bei einer Vielzahl physikalischer Prozesse spielen

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods
    corecore