802 research outputs found

    Inductive Logic Programming in Databases: from Datalog to DL+log

    Full text link
    In this paper we address an issue that has been brought to the attention of the database community with the advent of the Semantic Web, i.e. the issue of how ontologies (and semantics conveyed by them) can help solving typical database problems, through a better understanding of KR aspects related to databases. In particular, we investigate this issue from the ILP perspective by considering two database problems, (i) the definition of views and (ii) the definition of constraints, for a database whose schema is represented also by means of an ontology. Both can be reformulated as ILP problems and can benefit from the expressive and deductive power of the KR framework DL+log. We illustrate the application scenarios by means of examples. Keywords: Inductive Logic Programming, Relational Databases, Ontologies, Description Logics, Hybrid Knowledge Representation and Reasoning Systems. Note: To appear in Theory and Practice of Logic Programming (TPLP).Comment: 30 pages, 3 figures, 2 tables

    Revisiting Chase Termination for Existential Rules and their Extension to Nonmonotonic Negation

    Full text link
    Existential rules have been proposed for representing ontological knowledge, specifically in the context of Ontology- Based Data Access. Entailment with existential rules is undecidable. We focus in this paper on conditions that ensure the termination of a breadth-first forward chaining algorithm known as the chase. Several variants of the chase have been proposed. In the first part of this paper, we propose a new tool that allows to extend existing acyclicity conditions ensuring chase termination, while keeping good complexity properties. In the second part, we study the extension to existential rules with nonmonotonic negation under stable model semantics, discuss the relevancy of the chase variants for these rules and further extend acyclicity results obtained in the positive case.Comment: This paper appears in the Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    A Description Logic Framework for Commonsense Conceptual Combination Integrating Typicality, Probabilities and Cognitive Heuristics

    Get PDF
    We propose a nonmonotonic Description Logic of typicality able to account for the phenomenon of concept combination of prototypical concepts. The proposed logic relies on the logic of typicality ALC TR, whose semantics is based on the notion of rational closure, as well as on the distributed semantics of probabilistic Description Logics, and is equipped with a cognitive heuristic used by humans for concept composition. We first extend the logic of typicality ALC TR by typicality inclusions whose intuitive meaning is that "there is probability p about the fact that typical Cs are Ds". As in the distributed semantics, we define different scenarios containing only some typicality inclusions, each one having a suitable probability. We then focus on those scenarios whose probabilities belong to a given and fixed range, and we exploit such scenarios in order to ascribe typical properties to a concept C obtained as the combination of two prototypical concepts. We also show that reasoning in the proposed Description Logic is EXPTIME-complete as for the underlying ALC.Comment: 39 pages, 3 figure

    Defeasible Reasoning in SROEL: from Rational Entailment to Rational Closure

    Full text link
    In this work we study a rational extension SROELRTSROEL^R T of the low complexity description logic SROEL, which underlies the OWL EL ontology language. The extension involves a typicality operator T, whose semantics is based on Lehmann and Magidor's ranked models and allows for the definition of defeasible inclusions. We consider both rational entailment and minimal entailment. We show that deciding instance checking under minimal entailment is in general Π2P\Pi^P_2-hard, while, under rational entailment, instance checking can be computed in polynomial time. We develop a Datalog calculus for instance checking under rational entailment and exploit it, with stratified negation, for computing the rational closure of simple KBs in polynomial time.Comment: Accepted for publication on Fundamenta Informatica
    • …
    corecore