46 research outputs found

    Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic

    Get PDF
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n = 3” has been known for a long time. It needs “Hilbert mathematics”, which is inherently complete unlike the usual “Gödel mathematics”, and based on “Hilbert arithmetic” to generalize Peano arithmetic in a way to unify it with the qubit Hilbert space of quantum information. An “epoché to infinity” (similar to Husserl’s “epoché to reality”) is necessary to map Hilbert arithmetic into Peano arithmetic in order to be relevant to Fermat’s age. Furthermore, the two linked semigroups originating from addition and multiplication and from the Peano axioms in the final analysis can be postulated algebraically as independent of each other in a “Hamilton” modification of arithmetic supposedly equivalent to Peano arithmetic. The inductive proof of FLT can be deduced absolutely precisely in that Hamilton arithmetic and the pransfered as a corollary in the standard Peano arithmetic furthermore in a way accessible in Fermat’s epoch and thus, to himself in principle. A future, second part of the paper is outlined, getting directed to an eventual proof of the case “n=3” based on the qubit Hilbert space and the Kochen-Specker theorem inferable from it

    Axiomatics for the external numbers of nonstandard analysis

    Get PDF
    Neutrices are additive subgroups of a nonstandard model of the real numbers. An external number is the algebraic sum of a nonstandard real number and a neutrix. Due to the stability by some shifts, external numbers may be seen as mathematical models for orders of magnitude. The algebraic properties of external numbers gave rise to the so-called solids, which are extensions of ordered fields, having a restricted distributivity law. However, necessary and sufficient conditions can be given for distributivity to hold. In this article we develop an axiomatics for the external numbers. The axioms are similar to, but mostly somewhat weaker than the axioms for the real numbers and deal with algebraic rules, Dedekind completeness and the Archimedean property. A structure satisfying these axioms is called a complete arithmetical solid. We show that the external numbers form a complete arithmetical solid, implying the consistency of the axioms presented. We also show that the set of precise elements (elements with minimal magnitude) has a built-in nonstandard model of the rationals. Indeed the set of precise elements is situated between the nonstandard rationals and the nonstandard reals whereas the set of non-precise numbers is completely determined

    Boundary Algebra: A Simpler Approach to Boolean Algebra and the Sentential Connectives

    Get PDF
    Boundary algebra [BA] is a algebra of type , and a simplified notation for Spencer-Brown’s (1969) primary algebra. The syntax of the primary arithmetic [PA] consists of two atoms, () and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting, indifferently, the presence or absence of () into a PA formula yields a BA formula. The BA axioms are A1: ()()= (), and A2: “(()) [abbreviated ‘⊥’] may be written or erased at will,” implying (⊥)=(). The repeated application of A1 and A2 simplifies any PA formula to either () or ⊥. The basis for BA is B1: abc=bca (concatenation commutes & associates); B2, ⊥a=a (BA has a lower bound, ⊥); B3, (a)a=() (BA is a complemented lattice); and B4, (ba)a=(b)a (implies that BA is a distributive lattice). BA has two intended models: (1) the Boolean algebra 2 with base set B={(),⊥}, such that () ⇔ 1 [dually 0], (a) ⇔ a′, and ab ⇔ a∪b [a∩b]; and (2) sentential logic, such that () ⇔ true [false], (a) ⇔ ~a, and ab ⇔ a∨b [a∧b]. BA is a self-dual notation, facilitates a calculational style of proof, and simplifies clausal reasoning and Quine’s truth value analysis. BA resembles C.S. Peirce’s graphical logic, the symbolic logics of Leibniz and W.E. Johnson, the 2 notation of Byrne (1946), and the Boolean term schemata of Quine (1982).Boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; G. Spencer-Brown; C.S. Peirce; existential graphs

    Noncommutative Geometry

    Get PDF
    Noncommutative Geometry applies ideas from geometry to mathematical structures determined by noncommuting variables. This meeting emphasized the connections of Noncommutative Geometry to number theory and ergodic theory

    A primordial, mathematical, logical and computable, demonstration (proof) of the family of conjectures known as Goldbach´s

    Get PDF
    licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.In this document, by means of a novel system model and first order topological, algebraic and geometrical free-­‐context formal language (NT-­‐FS&L), first, we describe a new signature for a set of the natural numbers that is rooted in an intensional inductive de-­‐embedding process of both, the tensorial identities of the known as “natural numbers”, and the abstract framework of theirs locus-­‐positional based symbolic representations. Additionally, we describe that NT-­‐FS&L is able to: i.-­‐ Embed the De Morgan´s Laws and the FOL-­‐Peano´s Arithmetic Axiomatic. ii.-­‐ Provide new points of view and perspectives about the succession, precede and addition operations and of their abstract, topological, algebraic, analytic geometrical, computational and cognitive, formal representations. Second, by means of the inductive apparatus of NT-­‐FS&L, we proof that the family of conjectures known as Glodbach’s holds entailment and truth when the reasoning starts from the consistent and finitary axiomatic system herein describedWe wish to thank the Organic Chemistry Institute of the Spanish National Research Council (IQOG/CSIC) for its operative and technical support to the Pedro Noheda Research Group (PNRG). We also thank the Institute for Physical and Information Technologies (ITETI/CSIC) of the Spanish National Research Council for their hospitality. We also thank for their long years of dedicated and kind support Dr. Juan Martínez Armesto (VATC/CSIC), Belén Cabrero Suárez (IQOG/CSIC, Administration), Mar Caso Neira (IQOG/CENQUIOR/CSIC, Library) and David Herrero Ruíz (PNRG/IQOG/CSIC). We wish to thank to Bernabé-­‐Pajares´s brothers (Dr. Manuel Bernabé-­‐Pajares, IQOG/CSIC Structural Chemistry & Biochemistry; Magnetic Nuclear Resonance and Dr. Alberto Bernabé Pajares (Greek Philology and Indo-­‐European Linguistics/UCM), for their kind attention during numerous and kind discussions about space, time, imaging and representation of knowledge, language, transcription mistakes, myths and humans always holding us familiar illusion and passion for knowledge and intellectual progress. We wish to thank Dr. Carlos Cativiela Marín (ISQCH/UNIZAR) for his encouragement and for kind listening and attention. We wish to thank Miguel Lorca Melton for his encouragement and professional point of view as Patent Attorney. Last but not least, our gratitude to Nati, María and Jaime for the time borrowed from a loving husband and father. Finally, we apologize to many who have not been mentioned today, but to whom we are grateful. Finally, let us point out that we specially apologize to many who have been mentioned herein for any possible misunderstanding regarding the sense and intension of their philosophic, scientific and/or technical hard work and milestone ideas; we hope that at least Goldbach, Euler and Feymann do not belong to this last human´s collectivity.Peer reviewe

    Boundary Algebra: A Simple Notation for Boolean Algebra and the Truth Functors

    Get PDF
    Boundary algebra [BA] is a simpler notation for Spencer-Brown’s (1969) primary algebra [pa], the Boolean algebra 2, and the truth functors. The primary arithmetic [PA] consists of the atoms ‘()’ and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting the presence or absence of () into a PA formula yields a BA formula. The BA axioms are "()()=()" (A1), and "(()) [=?] may be written or erased at will” (A2). Repeated application of these axioms to a PA formula yields a member of B= {(),?} called its simplification. (a) has two intended interpretations: (a) ? a? (Boolean algebra 2), and (a) ? ~a (sentential logic). BA is self-dual: () ? 1 [dually 0] so that B is the carrier for 2, ab ? a?b [a?b], and (a)b [(a(b))] ? a=b, so that ?=() [()=?] follows trivially and B is a poset. The BA basis abc= bca (Dilworth 1938), a(ab)= a(b), and a()=() (Bricken 2002) facilitates clausal reasoning and proof by calculation. BA also simplifies normal forms and Quine’s (1982) truth value analysis. () ? true [false] yields boundary logic.G. Spencer Brown; boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; C.S. Peirce; existential graphs.

    Conference Program

    Get PDF
    Document provides a list of the sessions, speakers, workshops, and committees of the 32nd Summer Conference on Topology and Its Applications
    corecore