3,537 research outputs found

    Landscape connectivity and dropout stability of SGD solutions for over-parameterized neural networks

    Get PDF
    The optimization of multilayer neural networks typically leads to a solution with zero training error, yet the landscape can exhibit spurious local minima and the minima can be disconnected. In this paper, we shed light on this phenomenon: we show that the combination of stochastic gradient descent (SGD) and over-parameterization makes the landscape of multilayer neural networks approximately connected and thus more favorable to optimization. More specifically, we prove that SGD solutions are connected via a piecewise linear path, and the increase in loss along this path vanishes as the number of neurons grows large. This result is a consequence of the fact that the parameters found by SGD are increasingly dropout stable as the network becomes wider. We show that, if we remove part of the neurons (and suitably rescale the remaining ones), the change in loss is independent of the total number of neurons, and it depends only on how many neurons are left. Our results exhibit a mild dependence on the input dimension: they are dimension-free for two-layer networks and depend linearly on the dimension for multilayer networks. We validate our theoretical findings with numerical experiments for different architectures and classification tasks

    Neural Network Parametrization of Deep-Inelastic Structure Functions

    Full text link
    We construct a parametrization of deep-inelastic structure functions which retains information on experimental errors and correlations, and which does not introduce any theoretical bias while interpolating between existing data points. We generate a Monte Carlo sample of pseudo-data configurations and we train an ensemble of neural networks on them. This effectively provides us with a probability measure in the space of structure functions, within the whole kinematic region where data are available. This measure can then be used to determine the value of the structure function, its error, point-to-point correlations and generally the value and uncertainty of any function of the structure function itself. We apply this technique to the determination of the structure function F_2 of the proton and deuteron, and a precision determination of the isotriplet combination F_2[p-d]. We discuss in detail these results, check their stability and accuracy, and make them available in various formats for applications.Comment: Latex, 43 pages, 22 figures. (v2) Final version, published in JHEP; Sect.5.2 and Fig.9 improved, a few typos corrected and other minor improvements. (v3) Some inconsequential typos in Tab.1 and Tab 5 corrected. Neural parametrization available at http://sophia.ecm.ub.es/f2neura

    Exact solutions to the nonlinear dynamics of learning in deep linear neural networks

    Full text link
    Despite the widespread practical success of deep learning methods, our theoretical understanding of the dynamics of learning in deep neural networks remains quite sparse. We attempt to bridge the gap between the theory and practice of deep learning by systematically analyzing learning dynamics for the restricted case of deep linear neural networks. Despite the linearity of their input-output map, such networks have nonlinear gradient descent dynamics on weights that change with the addition of each new hidden layer. We show that deep linear networks exhibit nonlinear learning phenomena similar to those seen in simulations of nonlinear networks, including long plateaus followed by rapid transitions to lower error solutions, and faster convergence from greedy unsupervised pretraining initial conditions than from random initial conditions. We provide an analytical description of these phenomena by finding new exact solutions to the nonlinear dynamics of deep learning. Our theoretical analysis also reveals the surprising finding that as the depth of a network approaches infinity, learning speed can nevertheless remain finite: for a special class of initial conditions on the weights, very deep networks incur only a finite, depth independent, delay in learning speed relative to shallow networks. We show that, under certain conditions on the training data, unsupervised pretraining can find this special class of initial conditions, while scaled random Gaussian initializations cannot. We further exhibit a new class of random orthogonal initial conditions on weights that, like unsupervised pre-training, enjoys depth independent learning times. We further show that these initial conditions also lead to faithful propagation of gradients even in deep nonlinear networks, as long as they operate in a special regime known as the edge of chaos.Comment: Submission to ICLR2014. Revised based on reviewer feedbac
    • …
    corecore