494 research outputs found

    Proof Theory of Finite-valued Logics

    Get PDF
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first order logics in a general way, and to present some of the more important results in this area. In Systems covered are the resolution calculus, sequent calculus, tableaux, and natural deduction. This report is actually a template, from which all results can be specialized to particular logics

    Neutrality and Many-Valued Logics

    Get PDF
    In this book, we consider various many-valued logics: standard, linear, hyperbolic, parabolic, non-Archimedean, p-adic, interval, neutrosophic, etc. We survey also results which show the tree different proof-theoretic frameworks for many-valued logics, e.g. frameworks of the following deductive calculi: Hilbert's style, sequent, and hypersequent. We present a general way that allows to construct systematically analytic calculi for a large family of non-Archimedean many-valued logics: hyperrational-valued, hyperreal-valued, and p-adic valued logics characterized by a special format of semantics with an appropriate rejection of Archimedes' axiom. These logics are built as different extensions of standard many-valued logics (namely, Lukasiewicz's, Goedel's, Product, and Post's logics). The informal sense of Archimedes' axiom is that anything can be measured by a ruler. Also logical multiple-validity without Archimedes' axiom consists in that the set of truth values is infinite and it is not well-founded and well-ordered. On the base of non-Archimedean valued logics, we construct non-Archimedean valued interval neutrosophic logic INL by which we can describe neutrality phenomena.Comment: 119 page

    Philosophical logics - a survey and a bibliography

    Get PDF
    Intensional logics attract the attention of researchers from differing academic backgrounds and various scientific interests. My aim is to sketch the philosophical background of alethic, doxastic, and deontic logics, their formal and metaphysical presumptions and their various problems and paradoxes, without attempting formal rigor. A bibliography, concise on philosophical writings, is meant to allow the reader\u27s access to the maze of literature in the field

    Cut-free sequent calculi for the provability logic D

    Full text link
    We say that a Kripke model is a GL-model if the accessibility relation ≺\prec is transitive and converse well-founded. We say that a Kripke model is a D-model if it is obtained by attaching infinitely many worlds t1,t2,…t_1, t_2, \ldots, and tωt_\omega to a world t0t_0 of a GL-model so that t0≻t1≻t2≻⋯≻tωt_0 \succ t_1 \succ t_2 \succ \cdots \succ t_\omega. A non-normal modal logic D, which was studied by Beklemishev (1999), is characterized as follows. A formula φ\varphi is a theorem of D if and only if φ\varphi is true at tωt_\omega in any D-model. D is an intermediate logic between the provability logics GL and S. A Hilbert-style proof system for D is known, but there has been no sequent calculus. In this paper, we establish two sequent calculi for D, and show the cut-elimination theorem. We also introduce new Hilbert-style systems for D by interpreting the sequent calculi. Moreover we show a general result as follows. Let XX and X+X^+ be arbitrary modal logics. If the relationship between semantics of XX and semantics of X+X^+ is equal to that of GL and D, then X+X^+ can be axiomatized based on XX in the same way as the new axiomatization of D based on GL

    On lengths of proofs in non-classical logics

    Get PDF
    AbstractWe give proofs of the effective monotone interpolation property for the system of modal logic K, and others, and the system IL of intuitionistic propositional logic. Hence we obtain exponential lower bounds on the number of proof-lines in those systems. The main results have been given in [P. Hrubeš, Lower bounds for modal logics, Journal of Symbolic Logic 72 (3) (2007) 941–958; P. Hrubeš, A lower bound for intuitionistic logic, Annals of Pure and Applied Logic 146 (2007) 72–90]; here, we give considerably simplified proofs, as well as some generalisations

    On the pigeonhole and related principles in deep inference and monotone systems

    Get PDF
    International audienceWe construct quasipolynomial-size proofs of the propositional pigeonhole principle in the deep inference system KS, addressing an open problem raised in previous works and matching the best known upper bound for the more general class of monotone proofs. We make significant use of monotone formulae computing boolean threshold functions, an idea previously considered in works of Atserias et al. The main construction, monotone proofs witnessing the symmetry of such functions, involves an implementation of merge-sort in the design of proofs in order to tame the structural behaviour of atoms, and so the complexity of normalization. Proof transformations from previous work on atomic flows are then employed to yield appropriate KS proofs. As further results we show that our constructions can be applied to provide quasipolynomial-size KS proofs of the parity principle and the generalized pigeonhole principle. These bounds are inherited for the class of monotone proofs, and we are further able to construct n^O(log log n) -size monotone proofs of the weak pigeonhole principle with (1 + ε)n pigeons and n holes for ε = 1/ polylog n, thereby also improving the best known bounds for monotone proofs
    • …
    corecore