124,550 research outputs found

    Almost Settling the Hardness of Noncommutative Determinant

    Full text link
    In this paper, we study the complexity of computing the determinant of a matrix over a non-commutative algebra. In particular, we ask the question, "over which algebras, is the determinant easier to compute than the permanent?" Towards resolving this question, we show the following hardness and easiness of noncommutative determinant computation. * [Hardness] Computing the determinant of an n \times n matrix whose entries are themselves 2 \times 2 matrices over a field is as hard as computing the permanent over the field. This extends the recent result of Arvind and Srinivasan, who proved a similar result which however required the entries to be of linear dimension. * [Easiness] Determinant of an n \times n matrix whose entries are themselves d \times d upper triangular matrices can be computed in poly(n^d) time. Combining the above with the decomposition theorem of finite dimensional algebras (in particular exploiting the simple structure of 2 \times 2 matrix algebras), we can extend the above hardness and easiness statements to more general algebras as follows. Let A be a finite dimensional algebra over a finite field with radical R(A). * [Hardness] If the quotient A/R(A) is non-commutative, then computing the determinant over the algebra A is as hard as computing the permanent. * [Easiness] If the quotient A/R(A) is commutative and furthermore, R(A) has nilpotency index d (i.e., the smallest d such that R(A)d = 0), then there exists a poly(n^d)-time algorithm that computes determinants over the algebra A. In particular, for any constant dimensional algebra A over a finite field, since the nilpotency index of R(A) is at most a constant, we have the following dichotomy theorem: if A/R(A) is commutative, then efficient determinant computation is feasible and otherwise determinant is as hard as permanent.Comment: 20 pages, 3 figure

    On the expressive power of read-once determinants

    Full text link
    We introduce and study the notion of read-kk projections of the determinant: a polynomial f∈F[x1,…,xn]f \in \mathbb{F}[x_1, \ldots, x_n] is called a {\it read-kk projection of determinant} if f=det(M)f=det(M), where entries of matrix MM are either field elements or variables such that each variable appears at most kk times in MM. A monomial set SS is said to be expressible as read-kk projection of determinant if there is a read-kk projection of determinant ff such that the monomial set of ff is equal to SS. We obtain basic results relating read-kk determinantal projections to the well-studied notion of determinantal complexity. We show that for sufficiently large nn, the n×nn \times n permanent polynomial PermnPerm_n and the elementary symmetric polynomials of degree dd on nn variables SndS_n^d for 2≤d≤n−22 \leq d \leq n-2 are not expressible as read-once projection of determinant, whereas mon(Permn)mon(Perm_n) and mon(Snd)mon(S_n^d) are expressible as read-once projections of determinant. We also give examples of monomial sets which are not expressible as read-once projections of determinant

    P versus NP and geometry

    Get PDF
    I describe three geometric approaches to resolving variants of P v. NP, present several results that illustrate the role of group actions in complexity theory, and make a first step towards completely geometric definitions of complexity classes.Comment: 20 pages, to appear in special issue of J. Symbolic. Comp. dedicated to MEGA 200

    Matrix permanent and quantum entanglement of permutation invariant states

    Full text link
    We point out that a geometric measure of quantum entanglement is related to the matrix permanent when restricted to permutation invariant states. This connection allows us to interpret the permanent as an angle between vectors. By employing a recently introduced permanent inequality by Carlen, Loss and Lieb, we can prove explicit formulas of the geometric measure for permutation invariant basis states in a simple way.Comment: 10 page
    • …
    corecore