13,940 research outputs found

    Self-Dual and Complementary Dual Abelian Codes over Galois Rings

    Get PDF
    Self-dual and complementary dual cyclic/abelian codes over finite fields form important classes of linear codes that have been extensively studied due to their rich algebraic structures and wide applications. In this paper, abelian codes over Galois rings are studied in terms of the ideals in the group ring GR(pr,s)[G]{\rm GR}(p^r,s)[G], where GG is a finite abelian group and GR(pr,s){\rm GR}(p^r,s) is a Galois ring. Characterizations of self-dual abelian codes have been given together with necessary and sufficient conditions for the existence of a self-dual abelian code in GR(pr,s)[G]{\rm GR}(p^r,s)[G]. A general formula for the number of such self-dual codes is established. In the case where gcd(G,p)=1\gcd(|G|,p)=1, the number of self-dual abelian codes in GR(pr,s)[G]{\rm GR}(p^r,s)[G] is completely and explicitly determined. Applying known results on cyclic codes of length pap^a over GR(p2,s){\rm GR}(p^2,s), an explicit formula for the number of self-dual abelian codes in GR(p2,s)[G]{\rm GR}(p^2,s)[G] are given, where the Sylow pp-subgroup of GG is cyclic. Subsequently, the characterization and enumeration of complementary dual abelian codes in GR(pr,s)[G]{\rm GR}(p^r,s)[G] are established. The analogous results for self-dual and complementary dual cyclic codes over Galois rings are therefore obtained as corollaries.Comment: 22 page

    Constacyclic Codes over Finite Fields

    Get PDF
    An equivalence relation called isometry is introduced to classify constacyclic codes over a finite field; the polynomial generators of constacyclic codes of length tps\ell^tp^s are characterized, where pp is the characteristic of the finite field and \ell is a prime different from pp

    Quasi-Cyclic Complementary Dual Code

    Full text link
    LCD codes are linear codes that intersect with their dual trivially. Quasi cyclic codes that are LCD are characterized and studied by using their concatenated structure. Some asymptotic results are derived. Hermitian LCD codes are introduced to that end and their cyclic subclass is characterized. Constructions of QCCD codes from codes over larger alphabets are given

    Composite Cyclotomic Fourier Transforms with Reduced Complexities

    Full text link
    Discrete Fourier transforms~(DFTs) over finite fields have widespread applications in digital communication and storage systems. Hence, reducing the computational complexities of DFTs is of great significance. Recently proposed cyclotomic fast Fourier transforms (CFFTs) are promising due to their low multiplicative complexities. Unfortunately, there are two issues with CFFTs: (1) they rely on efficient short cyclic convolution algorithms, which has not been investigated thoroughly yet, and (2) they have very high additive complexities when directly implemented. In this paper, we address both issues. One of the main contributions of this paper is efficient bilinear 11-point cyclic convolution algorithms, which allow us to construct CFFTs over GF(211)(2^{11}). The other main contribution of this paper is that we propose composite cyclotomic Fourier transforms (CCFTs). In comparison to previously proposed fast Fourier transforms, our CCFTs achieve lower overall complexities for moderate to long lengths, and the improvement significantly increases as the length grows. Our 2047-point and 4095-point CCFTs are also first efficient DFTs of such lengths to the best of our knowledge. Finally, our CCFTs are also advantageous for hardware implementations due to their regular and modular structure.Comment: submitted to IEEE trans on Signal Processin
    corecore