76,477 research outputs found

    Structural parameterizations for boxicity

    Full text link
    The boxicity of a graph GG is the least integer dd such that GG has an intersection model of axis-aligned dd-dimensional boxes. Boxicity, the problem of deciding whether a given graph GG has boxicity at most dd, is NP-complete for every fixed d2d \ge 2. We show that boxicity is fixed-parameter tractable when parameterized by the cluster vertex deletion number of the input graph. This generalizes the result of Adiga et al., that boxicity is fixed-parameter tractable in the vertex cover number. Moreover, we show that boxicity admits an additive 11-approximation when parameterized by the pathwidth of the input graph. Finally, we provide evidence in favor of a conjecture of Adiga et al. that boxicity remains NP-complete when parameterized by the treewidth.Comment: 19 page

    Product Dimension of Forests and Bounded Treewidth Graphs

    Full text link
    The product dimension of a graph G is defined as the minimum natural number l such that G is an induced subgraph of a direct product of l complete graphs. In this paper we study the product dimension of forests, bounded treewidth graphs and k-degenerate graphs. We show that every forest on n vertices has a product dimension at most 1.441logn+3. This improves the best known upper bound of 3logn for the same due to Poljak and Pultr. The technique used in arriving at the above bound is extended and combined with a result on existence of orthogonal Latin squares to show that every graph on n vertices with a treewidth at most t has a product dimension at most (t+2)(logn+1). We also show that every k-degenerate graph on n vertices has a product dimension at most \ceil{8.317klogn}+1. This improves the upper bound of 32klogn for the same by Eaton and Rodl.Comment: 12 pages, 3 figure
    corecore