1,178 research outputs found

    A Characterization of Visibility Graphs for Pseudo-Polygons

    Full text link
    In this paper, we give a characterization of the visibility graphs of pseudo-polygons. We first identify some key combinatorial properties of pseudo-polygons, and we then give a set of five necessary conditions based off our identified properties. We then prove that these necessary conditions are also sufficient via a reduction to a characterization of vertex-edge visibility graphs given by O'Rourke and Streinu

    Weak Visibility Queries of Line Segments in Simple Polygons

    Full text link
    Given a simple polygon P in the plane, we present new algorithms and data structures for computing the weak visibility polygon from any query line segment in P. We build a data structure in O(n) time and O(n) space that can compute the visibility polygon for any query line segment s in O(k log n) time, where k is the size of the visibility polygon of s and n is the number of vertices of P. Alternatively, we build a data structure in O(n^3) time and O(n^3) space that can compute the visibility polygon for any query line segment in O(k + log n) time.Comment: 16 pages, 9 figures. A preliminary version of this paper appeared in ISAAC 2012 and we have improved results in this full versio

    Graphs with Plane Outside-Obstacle Representations

    Full text link
    An \emph{obstacle representation} of a graph consists of a set of polygonal obstacles and a distinct point for each vertex such that two points see each other if and only if the corresponding vertices are adjacent. Obstacle representations are a recent generalization of classical polygon--vertex visibility graphs, for which the characterization and recognition problems are long-standing open questions. In this paper, we study \emph{plane outside-obstacle representations}, where all obstacles lie in the unbounded face of the representation and no two visibility segments cross. We give a combinatorial characterization of the biconnected graphs that admit such a representation. Based on this characterization, we present a simple linear-time recognition algorithm for these graphs. As a side result, we show that the plane vertex--polygon visibility graphs are exactly the maximal outerplanar graphs and that every chordal outerplanar graph has an outside-obstacle representation.Comment: 12 pages, 7 figure

    Query-points visibility constraint minimum link paths in simple polygons

    Full text link
    We study the query version of constrained minimum link paths between two points inside a simple polygon PP with nn vertices such that there is at least one point on the path, visible from a query point. The method is based on partitioning PP into a number of faces of equal link distance from a point, called a link-based shortest path map (SPM). Initially, we solve this problem for two given points ss, tt and a query point qq. Then, the proposed solution is extended to a general case for three arbitrary query points ss, tt and qq. In the former, we propose an algorithm with O(n)O(n) preprocessing time. Extending this approach for the latter case, we develop an algorithm with O(n3)O(n^3) preprocessing time. The link distance of a qq-visiblevisible path between ss, tt as well as the path are provided in time O(logn)O(\log n) and O(m+logn)O(m+\log n), respectively, for the above two cases, where mm is the number of links
    corecore