6,590 research outputs found

    An Even Faster and More Unifying Algorithm for Comparing Trees via Unbalanced Bipartite Matchings

    Full text link
    A widely used method for determining the similarity of two labeled trees is to compute a maximum agreement subtree of the two trees. Previous work on this similarity measure is only concerned with the comparison of labeled trees of two special kinds, namely, uniformly labeled trees (i.e., trees with all their nodes labeled by the same symbol) and evolutionary trees (i.e., leaf-labeled trees with distinct symbols for distinct leaves). This paper presents an algorithm for comparing trees that are labeled in an arbitrary manner. In addition to this generality, this algorithm is faster than the previous algorithms. Another contribution of this paper is on maximum weight bipartite matchings. We show how to speed up the best known matching algorithms when the input graphs are node-unbalanced or weight-unbalanced. Based on these enhancements, we obtain an efficient algorithm for a new matching problem called the hierarchical bipartite matching problem, which is at the core of our maximum agreement subtree algorithm.Comment: To appear in Journal of Algorithm

    The history of degenerate (bipartite) extremal graph problems

    Full text link
    This paper is a survey on Extremal Graph Theory, primarily focusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version of our survey presented in Erdos 100. In this version 2 only a citation was complete

    Partition function of periodic isoradial dimer models

    Full text link
    Isoradial dimer models were introduced in \cite{Kenyon3} - they consist of dimer models whose underlying graph satisfies a simple geometric condition, and whose weight function is chosen accordingly. In this paper, we prove a conjecture of \cite{Kenyon3}, namely that for periodic isoradial dimer models, the growth rate of the toroidal partition function has a simple explicit formula involving the local geometry of the graph only. This is a surprising feature of periodic isoradial dimer models, which does not hold in the general periodic dimer case \cite{KOS}.Comment: 12 pages, 2 figure
    corecore