8,337 research outputs found

    Subset Warping: Rubber Sheeting with Cuts

    Full text link
    Image warping, often referred to as "rubber sheeting" represents the deformation of a domain image space into a range image space. In this paper, a technique is described which extends the definition of a rubber-sheet transformation to allow a polygonal region to be warped into one or more subsets of itself, where the subsets may be multiply connected. To do this, it constructs a set of "slits" in the domain image, which correspond to discontinuities in the range image, using a technique based on generalized Voronoi diagrams. The concept of medial axis is extended to describe inner and outer medial contours of a polygon. Polygonal regions are decomposed into annular subregions, and path homotopies are introduced to describe the annular subregions. These constructions motivate the definition of a ladder, which guides the construction of grid point pairs necessary to effect the warp itself

    Perfect simulation for interacting point processes, loss networks and Ising models

    Get PDF
    We present a perfect simulation algorithm for measures that are absolutely continuous with respect to some Poisson process and can be obtained as invariant measures of birth-and-death processes. Examples include area- and perimeter-interacting point processes (with stochastic grains), invariant measures of loss networks, and the Ising contour and random cluster models. The algorithm does not involve couplings of the process with different initial conditions and it is not tied up to monotonicity requirements. Furthermore, it directly provides perfect samples of finite windows of the infinite-volume measure, subjected to time and space ``user-impatience bias''. The algorithm is based on a two-step procedure: (i) a perfect-simulation scheme for a (finite and random) relevant portion of a (space-time) marked Poisson processes (free birth-and-death process, free loss networks), and (ii) a ``cleaning'' algorithm that trims out this process according to the interaction rules of the target process. The first step involves the perfect generation of ``ancestors'' of a given object, that is of predecessors that may have an influence on the birth-rate under the target process. The second step, and hence the whole procedure, is feasible if these ``ancestors'' form a finite set with probability one. We present a sufficiency criteria for this condition, based on the absence of infinite clusters for an associated (backwards) oriented percolation model.Comment: Revised version after referee of SPA: 39 page

    The random geometry of equilibrium phases

    Full text link
    This is a (long) survey about applications of percolation theory in equilibrium statistical mechanics. The chapters are as follows: 1. Introduction 2. Equilibrium phases 3. Some models 4. Coupling and stochastic domination 5. Percolation 6. Random-cluster representations 7. Uniqueness and exponential mixing from non-percolation 8. Phase transition and percolation 9. Random interactions 10. Continuum modelsComment: 118 pages. Addresses: [email protected] http://www.mathematik.uni-muenchen.de/~georgii.html [email protected] http://www.math.chalmers.se/~olleh [email protected]

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Full text link
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d≥3d \ge 3, these pathologies occur in a full neighborhood {β>β0, ∣h∣<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d≥2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d≥4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
    • …
    corecore