96 research outputs found

    Hilbert's Metamathematical Problems and Their Solutions

    Get PDF
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily by model theoretical concerns. Accordingly, the ultimate aim of his consistency program was to prove the model-theoretical consistency of mathematical theories. It turns out that for the purpose of carrying out such consistency proofs, a suitable modification of the ordinary first-order logic is needed. To effect this modification, independence-friendly logic is needed as the appropriate conceptual framework. It is then shown how the model theoretical consistency of arithmetic can be proved by using IF logic as its basic logic. Hilbert’s other problems, manifesting themselves as aspects (ii), (iii), and (iv)—most notably the problem of the status of the axiom of choice, the problem of the role of the law of excluded middle, and the problem of giving an elementary account of quantification—can likewise be approached by using the resources of IF logic. It is shown that by means of IF logic one can carry out Hilbertian solutions to all these problems. The two major results concerning aspects (ii), (iii) and (iv) are the following: (a) The axiom of choice is a logical principle; (b) The law of excluded middle divides metamathematical methods into elementary and non-elementary ones. It is argued that these results show that IF logic helps to vindicate Hilbert’s nominalist philosophy of mathematics. On the basis of an elementary approach to logic, which enriches the expressive resources of ordinary first-order logic, this dissertation shows how the different problems that Hilbert discovered in the foundations of mathematics can be solved

    A synthetic axiomatization of Map Theory

    Get PDF
    Includes TOC détaillée, index et appendicesInternational audienceThis paper presents a subtantially simplified axiomatization of Map Theory and proves the consistency of this axiomatization in ZFC under the assumption that there exists an inaccessible ordinal. Map Theory axiomatizes lambda calculus plus Hilbert's epsilon operator. All theorems of ZFC set theory including the axiom of foundation are provable in Map Theory, and if one omits Hilbert's epsilon operator from Map Theory then one is left with a computer programming language. Map Theory fulfills Church's original aim of introducing lambda calculus. Map Theory is suited for reasoning about classical mathematics as well ascomputer programs. Furthermore, Map Theory is suited for eliminating thebarrier between classical mathematics and computer science rather than just supporting the two fields side by side. Map Theory axiomatizes a universe of "maps", some of which are "wellfounded". The class of wellfounded maps in Map Theory corresponds to the universe of sets in ZFC. The first version MT0 of Map Theory had axioms which populated the class of wellfounded maps, much like the power set axiom et.al. populates the universe of ZFC. The new axiomatization MT of Map Theory is "synthetic" in the sense that the class of wellfounded maps is defined inside MapTheory rather than being introduced through axioms. In the paper we define the notion of kappa- and kappasigma-expansions and prove that if sigma is the smallest strongly inaccessible cardinal then canonical kappasigma expansions are models of MT (which proves the consistency). Furthermore, in the appendix, we prove that canonical omega-expansions are fully abstract models of the computational part of Map Theory

    Stochastic control liaisons: Richard Sinkhorn meets gaspard monge on a schr\uf6dinger bridge

    Get PDF
    In 1931-1932, Erwin Schr\uf6dinger studied a hot gas Gedankenexperiment (an instance of large deviations of the empirical distribution). Schr\uf6dinger's problem represents an early example of a fundamental inference method, the so-called maximum entropy method, having roots in Boltzmann's work and being developed in subsequent years by Jaynes, Burg, Dempster, and Csisz\ue1r. The problem, known as the Schr\uf6dinger bridge problem (SBP) with "uniform"prior, was more recently recognized as a regularization of the Monge-Kantorovich optimal mass transport (OMT) problem, leading to effective computational schemes for the latter. Specifically, OMT with quadratic cost may be viewed as a zerotemperature limit of the problem posed by Schr\uf6dinger in the early 1930s. The latter amounts to minimization of Helmholtz's free energy over probability distributions that are constrained to possess two given marginals. The problem features a delicate compromise, mediated by a temperature parameter, between minimizing the internal energy and maximizing the entropy. These concepts are central to a rapidly expanding area of modern science dealing with the so-called Sinkhorn algorithm, which appears as a special case of an algorithm first studied in the more challenging continuous space setting by the French analyst Robert Fortet in 1938-1940 specifically for Schr\uf6dinger bridges. Due to the constraint on end-point distributions, dynamic programming is not a suitable tool to attack these problems. Instead, Fortet's iterative algorithm and its discrete counterpart, the Sinkhorn iteration, permit computation of the optimal solution by iteratively solving the so-called Schr\uf6dinger system. Convergence of the iteration is guaranteed by contraction along the steps in suitable metrics, such as Hilbert's projective metric. In both the continuous as well as the discrete time and space settings, stochastic control provides a reformulation of and a context for the dynamic versions of general Schr\uf6dinger bridge problems and of their zero-temperature limit, the OMT problem. These problems, in turn, naturally lead to steering problems for flows of one-time marginals which represent a new paradigm for controlling uncertainty. The zero-temperature problem in the continuous-time and space setting turns out to be the celebrated Benamou-Brenier characterization of the McCann displacement interpolation flow in OMT. The formalism and techniques behind these control problems on flows of probability distributions have attracted significant attention in recent years as they lead to a variety of new applications in spacecraft guidance, control of robot or biological swarms, sensing, active cooling, and network routing as well as in computer and data science. This multifaceted and versatile framework, intertwining SBP and OMT, provides the substrate for the historical and technical overview of the field given in this paper. A key motivation has been to highlight links between the classical early work in both topics and the more recent stochastic control viewpoint, which naturally lends itself to efficient computational schemes and interesting generalizations

    The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics

    Get PDF
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This paper investigates both conditions and philosophical background necessary for that modification. The main conclusion is that the concept of infinity as underlying contemporary mathematics cannot be reduced to a single Peano arithmetic, but to at least two ones independent of each other. Intuitionism, quantum mechanics, and Gentzen’s approaches to completeness an even Hilbert’s finitism can be unified from that viewpoint. Mathematics may found itself by a way of finitism complemented by choice. The concept of information as the quantity of choices underlies that viewpoint. Quantum mechanics interpretable in terms of information and quantum information is inseparable from mathematics and its foundation

    Agent planning, models, virtual haptic computing, and visual ontology

    Get PDF
    The paper is a basis for multiagent visual computing with the Morph Gentzen logic. A basis to VR computing, computational illusion, and virtual ontology is presented. The IM_BID model is introduced for planning, spatial computing, and visual ontology. Visual intelligent objects are applied with virtual intelligent trees to carry on visual planning. New KR techniques are presented with generic diagrams and appllied to define computable models. The IM Morph Gentzen Logic for computing for multimedia are new projects with important computing applications. The basic principles are a mathematical logic where a Gentzen or natural deduction systems is defined by taking arbitrary structures and multimedia objects coded by diagram functions.The techniques can be applied to arbitrary structures definable by infinitary languages. Multimedia objects are viewed as syntactic objects defined by functions, to which the deductive system is applied.Applications in Artificial Intelligence - AgentsRed de Universidades con Carreras en Informática (RedUNCI

    Agent planning, models, virtual haptic computing, and visual ontology

    Get PDF
    The paper is a basis for multiagent visual computing with the Morph Gentzen logic. A basis to VR computing, computational illusion, and virtual ontology is presented. The IM_BID model is introduced for planning, spatial computing, and visual ontology. Visual intelligent objects are applied with virtual intelligent trees to carry on visual planning. New KR techniques are presented with generic diagrams and appllied to define computable models. The IM Morph Gentzen Logic for computing for multimedia are new projects with important computing applications. The basic principles are a mathematical logic where a Gentzen or natural deduction systems is defined by taking arbitrary structures and multimedia objects coded by diagram functions.The techniques can be applied to arbitrary structures definable by infinitary languages. Multimedia objects are viewed as syntactic objects defined by functions, to which the deductive system is applied.Applications in Artificial Intelligence - AgentsRed de Universidades con Carreras en Informática (RedUNCI

    Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic

    Get PDF
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n = 3” has been known for a long time. It needs “Hilbert mathematics”, which is inherently complete unlike the usual “Gödel mathematics”, and based on “Hilbert arithmetic” to generalize Peano arithmetic in a way to unify it with the qubit Hilbert space of quantum information. An “epoché to infinity” (similar to Husserl’s “epoché to reality”) is necessary to map Hilbert arithmetic into Peano arithmetic in order to be relevant to Fermat’s age. Furthermore, the two linked semigroups originating from addition and multiplication and from the Peano axioms in the final analysis can be postulated algebraically as independent of each other in a “Hamilton” modification of arithmetic supposedly equivalent to Peano arithmetic. The inductive proof of FLT can be deduced absolutely precisely in that Hamilton arithmetic and the pransfered as a corollary in the standard Peano arithmetic furthermore in a way accessible in Fermat’s epoch and thus, to himself in principle. A future, second part of the paper is outlined, getting directed to an eventual proof of the case “n=3” based on the qubit Hilbert space and the Kochen-Specker theorem inferable from it

    A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory

    Get PDF
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. Many modifications of Turing machines cum quantum ones are researched in Section II for the Halting problem and completeness, and the model of two independent Turing machines seems to generalize them. Then, that pair can be postulated as the formal definition of reality therefore being complete unlike any of them standalone, remaining incomplete without its complementary counterpart. Representation is formal defined as a one-to-one mapping between the two Turing machines, and the set of all those mappings can be considered as “language” therefore including metaphors as mappings different than representation. Section III investigates that formal relation of “reality”, “representation”, and “language” modeled by (at least two) Turing machines. The independence of (two) Turing machines is interpreted by means of game theory and especially of the Nash equilibrium in Section IV. Choice and information as the quantity of choices are involved. That approach seems to be equivalent to that based on set theory and the concept of actual infinity in mathematics and allowing of practical implementations

    Representation and Reality by Language: How to make a home quantum computer?

    Get PDF
    A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics having a remarkable symmetry to the axiom of choice. The quantity of information is interpreted as the number of elementary choices (bits). Quantum information is seen as the generalization of information to infinite sets or series. The equivalence of that model to a quantum computer is demonstrated. The condition for the Turing machines to be independent of each other is reduced to the state of Nash equilibrium between them. Two relative models of language as game in the sense of game theory and as ontology of metaphors (all mappings, which are not one-to-one, i.e. not representations of reality in a formal sense) are deduced
    • …
    corecore