318 research outputs found

    An Optimal Control Theory for the Traveling Salesman Problem and Its Variants

    Get PDF
    We show that the traveling salesman problem (TSP) and its many variants may be modeled as functional optimization problems over a graph. In this formulation, all vertices and arcs of the graph are functionals; i.e., a mapping from a space of measurable functions to the field of real numbers. Many variants of the TSP, such as those with neighborhoods, with forbidden neighborhoods, with time-windows and with profits, can all be framed under this construct. In sharp contrast to their discrete-optimization counterparts, the modeling constructs presented in this paper represent a fundamentally new domain of analysis and computation for TSPs and their variants. Beyond its apparent mathematical unification of a class of problems in graph theory, the main advantage of the new approach is that it facilitates the modeling of certain application-specific problems in their home space of measurable functions. Consequently, certain elements of economic system theory such as dynamical models and continuous-time cost/profit functionals can be directly incorporated in the new optimization problem formulation. Furthermore, subtour elimination constraints, prevalent in discrete optimization formulations, are naturally enforced through continuity requirements. The price for the new modeling framework is nonsmooth functionals. Although a number of theoretical issues remain open in the proposed mathematical framework, we demonstrate the computational viability of the new modeling constructs over a sample set of problems to illustrate the rapid production of end-to-end TSP solutions to extensively-constrained practical problems.Comment: 24 pages, 8 figure

    Regional Search for the Resource Constrained Assignment Problem

    Get PDF
    The resource constrained assignment problem (RCAP) is to find a minimal cost partition of the nodes of a directed graph into cycles such that a resource constraint is fulfilled. The RCAP has its roots in rolling stock rotation optimization where a railway timetable has to be covered by rotations, i.e., cycles. In that context, the resource constraint corresponds to maintenance constraints for rail vehicles. Moreover, the RCAP generalizes variants of the vehicle routing problem (VRP). The paper contributes an exact branch and bound algorithm for the RCAP and, primarily, a straightforward algorithmic concept that we call regional search (RS). As a symbiosis of a local and a global search algorithm, the result of an RS is a local optimum for a combinatorial optimization problem. In addition, the local optimum must be globally optimal as well if an instance of a problem relaxation is computed. In order to present the idea for a standardized setup we introduce an RS for binary programs. But the proper contribution of the paper is an RS that turns the Hungarian method into a powerful heuristic for the resource constrained assignment problem by utilizing the exact branch and bound. We present computational results for RCAP instances from an industrial cooperation with Deutsche Bahn Fernverkehr AG as well as for VRP instances from the literature. The results show that our RS provides a solution quality of 1.4 % average gap w.r.t. the best known solutions of a large test set. In addition, our branch and bound algorithm can solve many RCAP instances to proven optimality, e.g., almost all asymmetric traveling salesman and capacitated vehicle routing problems that we consider

    The traveling salesman problem for lines, balls and planes

    Full text link
    We revisit the traveling salesman problem with neighborhoods (TSPN) and propose several new approximation algorithms. These constitute either first approximations (for hyperplanes, lines, and balls in Rd\mathbb{R}^d, for d3d\geq 3) or improvements over previous approximations achievable in comparable times (for unit disks in the plane). \smallskip (I) Given a set of nn hyperplanes in Rd\mathbb{R}^d, a TSP tour whose length is at most O(1)O(1) times the optimal can be computed in O(n)O(n) time, when dd is constant. \smallskip (II) Given a set of nn lines in Rd\mathbb{R}^d, a TSP tour whose length is at most O(log3n)O(\log^3 n) times the optimal can be computed in polynomial time for all dd. \smallskip (III) Given a set of nn unit balls in Rd\mathbb{R}^d, a TSP tour whose length is at most O(1)O(1) times the optimal can be computed in polynomial time, when dd is constant.Comment: 30 pages, 9 figures; final version to appear in ACM Transactions on Algorithm

    Polynomially solvable cases of the bipartite traveling salesman problem

    Get PDF
    Given two sets, R and B, consisting of n cities each, in the bipartite traveling salesman problem one looks for the shortest way of visiting alternately the cities of R and B, returning to the city of origin. This problem is known to be NP-hard for arbitrary sets R and B. In this paper we provide an O(n6) algorithm to solve the bipartite traveling salesman problem if the quadrangle property holds. In particular, this algorithm can be applied to solve in O(n6) time the bipartite traveling salesman problem in the following cases: S=R¿B is a convex point set in the plane, S=R¿B is the set of vertices of a simple polygon and V=R¿B is the set of vertices of a circular graph. For this last case, we also describe another algorithm which runs in O(n2) time

    TSP With Locational Uncertainty: The Adversarial Model

    Get PDF
    In this paper we study a natural special case of the Traveling Salesman Problem (TSP) with point-locational-uncertainty which we will call the adversarial TSP problem (ATSP). Given a metric space (X, d) and a set of subsets R = {R_1, R_2, ...R_n} : R_i subseteq X, the goal is to devise an ordering of the regions, sigma_R, that the tour will visit such that when a single point is chosen from each region, the induced tour over those points in the ordering prescribed by sigma_R is as short as possible. Unlike the classical locational-uncertainty-TSP problem, which focuses on minimizing the expected length of such a tour when the point within each region is chosen according to some probability distribution, here, we focus on the adversarial model in which once the choice of sigma_R is announced, an adversary selects a point from each region in order to make the resulting tour as long as possible. In other words, we consider an offline problem in which the goal is to determine an ordering of the regions R that is optimal with respect to the ``worst\u27\u27 point possible within each region being chosen by an adversary, who knows the chosen ordering. We give a 3-approximation when R is a set of arbitrary regions/sets of points in a metric space. We show how geometry leads to improved constant factor approximations when regions are parallel line segments of the same lengths, and a polynomial-time approximation scheme (PTAS) for the important special case in which R is a set of disjoint unit disks in the plane

    A Group Theoretic Tabu Search Approach to the Traveling Salesman Problem

    Get PDF
    The traveling salesman problem (TSP) is a combinatorial optimization problem that is mathematically modeled as a binary integer program. The TSP is a very important problem for the operations research academician and practitioner. This research demonstrates a Group Theoretic Tabu Search (GTTS) Java algorithm for the TSP. The tabu search metaheuristic continuously finds near-optimal solutions to the TSP under various different implementations. Algebraic group theory offers a more formal mathematical setting to study the TSP providing a theoretical foundation for describing tabu search. Specifically, this thesis uses the Symmetric Group on n letters, S(n), which is the set of all n! permutations on n letters whose binary operation is permutation multiplication, to describe the TSP solution space. Thus, the TSP is studied as a permutation problem rather than an integer program by applying the principles of group theory to define the tabu search move and neighborhood structure. The group theoretic concept of conjugation (an operation involving two group elements) simplifies the move definition as well as the intensification and diversification strategies. Conjugation in GTTS diversifies the search by allowing large rearrangement moves within a tour in a single move operation. Empirical results are presented along with the theoretical motivations for the research

    Learning for Graph Matching and Related Combinatorial Optimization Problems

    Get PDF
    corecore