75,199 research outputs found

    Using schedulers to test probabilistic distributed systems

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-012-0244-5. Copyright Ā© 2012, British Computer Society.Formal methods are one of the most important approaches to increasing the confidence in the correctness of software systems. A formal specification can be used as an oracle in testing since one can determine whether an observed behaviour is allowed by the specification. This is an important feature of formal testing: behaviours of the system observed in testing are compared with the specification and ideally this comparison is automated. In this paper we study a formal testing framework to deal with systems that interact with their environment at physically distributed interfaces, called ports, and where choices between different possibilities are probabilistically quantified. Building on previous work, we introduce two families of schedulers to resolve nondeterministic choices among different actions of the system. The first type of schedulers, which we call global schedulers, resolves nondeterministic choices by representing the environment as a single global scheduler. The second type, which we call localised schedulers, models the environment as a set of schedulers with there being one scheduler for each port. We formally define the application of schedulers to systems and provide and study different implementation relations in this setting

    Mutation testing from probabilistic finite state machines

    Get PDF
    Mutation testing traditionally involves mutating a program in order to produce a set of mutants and using these mutants in order to either estimate the effectiveness of a test suite or to drive test generation. Recently, however, this approach has been applied to specifications such as those written as finite state machines. This paper extends mutation testing to finite state machine models in which transitions have associated probabilities. The paper describes several ways of mutating a probabilistic finite state machine (PFSM) and shows how test sequences that distinguish between a PFSM and its mutants can be generated. Testing then involves applying each test sequence multiple times, observing the resultant output sequences and using results from statistical sampling theory in order to compare the observed frequency of each output sequence with that expected

    Towards Scalable Synthesis of Stochastic Control Systems

    Full text link
    Formal control synthesis approaches over stochastic systems have received significant attention in the past few years, in view of their ability to provide provably correct controllers for complex logical specifications in an automated fashion. Examples of complex specifications of interest include properties expressed as formulae in linear temporal logic (LTL) or as automata on infinite strings. A general methodology to synthesize controllers for such properties resorts to symbolic abstractions of the given stochastic systems. Symbolic models are discrete abstractions of the given concrete systems with the property that a controller designed on the abstraction can be refined (or implemented) into a controller on the original system. Although the recent development of techniques for the construction of symbolic models has been quite encouraging, the general goal of formal synthesis over stochastic control systems is by no means solved. A fundamental issue with the existing techniques is the known "curse of dimensionality," which is due to the need to discretize state and input sets and that results in an exponential complexity over the number of state and input variables in the concrete system. In this work we propose a novel abstraction technique for incrementally stable stochastic control systems, which does not require state-space discretization but only input set discretization, and that can be potentially more efficient (and thus scalable) than existing approaches. We elucidate the effectiveness of the proposed approach by synthesizing a schedule for the coordination of two traffic lights under some safety and fairness requirements for a road traffic model. Further we argue that this 5-dimensional linear stochastic control system cannot be studied with existing approaches based on state-space discretization due to the very large number of generated discrete states.Comment: 22 pages, 3 figures. arXiv admin note: text overlap with arXiv:1407.273

    Contextuality in Measurement-based Quantum Computation

    Full text link
    We show, under natural assumptions for qubit systems, that measurement-based quantum computations (MBQCs) which compute a non-linear Boolean function with high probability are contextual. The class of contextual MBQCs includes an example which is of practical interest and has a super-polynomial speedup over the best known classical algorithm, namely the quantum algorithm that solves the Discrete Log problem.Comment: Version 3: probabilistic version of Theorem 1 adde

    Formal Verification of Differential Privacy for Interactive Systems

    Full text link
    Differential privacy is a promising approach to privacy preserving data analysis with a well-developed theory for functions. Despite recent work on implementing systems that aim to provide differential privacy, the problem of formally verifying that these systems have differential privacy has not been adequately addressed. This paper presents the first results towards automated verification of source code for differentially private interactive systems. We develop a formal probabilistic automaton model of differential privacy for systems by adapting prior work on differential privacy for functions. The main technical result of the paper is a sound proof technique based on a form of probabilistic bisimulation relation for proving that a system modeled as a probabilistic automaton satisfies differential privacy. The novelty lies in the way we track quantitative privacy leakage bounds using a relation family instead of a single relation. We illustrate the proof technique on a representative automaton motivated by PINQ, an implemented system that is intended to provide differential privacy. To make our proof technique easier to apply to realistic systems, we prove a form of refinement theorem and apply it to show that a refinement of the abstract PINQ automaton also satisfies our differential privacy definition. Finally, we begin the process of automating our proof technique by providing an algorithm for mechanically checking a restricted class of relations from the proof technique.Comment: 65 pages with 1 figur

    The Random Oracle Methodology, Revisited

    Get PDF
    We take a critical look at the relationship between the security of cryptographic schemes in the Random Oracle Model, and the security of the schemes that result from implementing the random oracle by so called "cryptographic hash functions". The main result of this paper is a negative one: There exist signature and encryption schemes that are secure in the Random Oracle Model, but for which any implementation of the random oracle results in insecure schemes. In the process of devising the above schemes, we consider possible definitions for the notion of a "good implementation" of a random oracle, pointing out limitations and challenges.Comment: 31 page
    • ā€¦
    corecore