27,911 research outputs found

    A note on on-the-fly verification algorithms

    Get PDF
    The automata-theoretic approach to verification of LTL relies on an algorithm for finding accepting cycles in the product of the system and a BĆ¼chi automaton for the negation of the formula. Explicit-state model checkers typically construct the product space "on the fly" and explore the states using depth-first search. We survey algorithms proposed for this purpose and propose two improved algorithms, one based on nested DFS, the other on strongly connected components. We compare these algorithms both theoretically and experimentally and determine cases where both algorithms can be useful

    An Object-Oriented Framework for Explicit-State Model Checking

    Get PDF
    This paper presents a conceptual architecture for an object-oriented framework to support the development of formal veriļ¬cation tools (i.e. model checkers). The objective of the architecture is to support the reuse of algorithms and to encourage a modular design of tools. The conceptual framework is accompanied by a C++ implementation which provides reusable algorithms for the simulation and veriļ¬cation of explicit-state models as well as a model representation for simple models based on guard-based process descriptions. The framework has been successfully used to develop a model checker for a subset of PROMELA

    A Tighter Bound for the Determinization of Visibly Pushdown Automata

    Full text link
    Visibly pushdown automata (VPA), introduced by Alur and Madhusuan in 2004, is a subclass of pushdown automata whose stack behavior is completely determined by the input symbol according to a fixed partition of the input alphabet. Since its introduce, VPAs have been shown to be useful in various context, e.g., as specification formalism for verification and as automaton model for processing XML streams. Due to high complexity, however, implementation of formal verification based on VPA framework is a challenge. In this paper we consider the problem of implementing VPA-based model checking algorithms. For doing so, we first present an improvement on upper bound for determinization of VPA. Next, we propose simple on-the-fly algorithms to check universality and inclusion problems of this automata class. Then, we implement the proposed algorithms in a prototype tool. Finally, we conduct experiments on randomly generated VPAs. The experimental results show that the proposed algorithms are considerably faster than the standard ones

    On-the-fly Fast Mean-Field Model-Checking: Extended Version

    Full text link
    A novel, scalable, on-the-fly model-checking procedure is presented to verify bounded PCTL properties of selected individuals in the context of very large systems of independent interacting objects. The proposed procedure combines on-the-fly model checking techniques with deterministic mean-field approximation in discrete time. The asymptotic correctness of the procedure is shown and some results of the application of a prototype implementation of the FlyFast model-checker are presented

    Model-Checking the Higher-Dimensional Modal mu-Calculus

    Full text link
    The higher-dimensional modal mu-calculus is an extension of the mu-calculus in which formulas are interpreted in tuples of states of a labeled transition system. Every property that can be expressed in this logic can be checked in polynomial time, and conversely every polynomial-time decidable problem that has a bisimulation-invariant encoding into labeled transition systems can also be defined in the higher-dimensional modal mu-calculus. We exemplify the latter connection by giving several examples of decision problems which reduce to model checking of the higher-dimensional modal mu-calculus for some fixed formulas. This way generic model checking algorithms for the logic can then be used via partial evaluation in order to obtain algorithms for theses problems which may benefit from improvements that are well-established in the field of program verification, namely on-the-fly and symbolic techniques. The aim of this work is to extend such techniques to other fields as well, here exemplarily done for process equivalences, automata theory, parsing, string problems, and games.Comment: In Proceedings FICS 2012, arXiv:1202.317
    • ā€¦
    corecore