3,266 research outputs found

    Fast systematic encoding of multiplicity codes

    Get PDF
    We present quasi-linear time systematic encoding algorithms for multiplicity codes. The algorithms have their origins in the fast multivariate interpolation and evaluation algorithms of van der Hoeven and Schost (2013), which we generalise to address certain Hermite-type interpolation and evaluation problems. By providing fast encoding algorithms for multiplicity codes, we remove an obstruction on the road to the practical application of the private information retrieval protocol of Augot, Levy-dit-Vehel and Shikfa (2014)

    Bivariate hierarchical Hermite spline quasi--interpolation

    Full text link
    Spline quasi-interpolation (QI) is a general and powerful approach for the construction of low cost and accurate approximations of a given function. In order to provide an efficient adaptive approximation scheme in the bivariate setting, we consider quasi-interpolation in hierarchical spline spaces. In particular, we study and experiment the features of the hierarchical extension of the tensor-product formulation of the Hermite BS quasi-interpolation scheme. The convergence properties of this hierarchical operator, suitably defined in terms of truncated hierarchical B-spline bases, are analyzed. A selection of numerical examples is presented to compare the performances of the hierarchical and tensor-product versions of the scheme

    Numerical Strategies of Computing the Luminosity Distance

    Full text link
    We propose two efficient numerical methods of evaluating the luminosity distance in the spatially flat {\Lambda}CDM universe. The first method is based on the Carlson symmetric form of elliptic integrals, which is highly accurate and can replace numerical quadratures. The second method, using a modified version of Hermite interpolation, is less accurate but involves only basic numerical operations and can be easily implemented. We compare our methods with other numerical approximation schemes and explore their respective features and limitations. Possible extensions of these methods to other cosmological models are also discussed.Comment: 4 pages, 2 figures. v2: A minor error in the last equation has been corrected (conclusions are not affected). v3: Accepted by MNRA
    • …
    corecore