14,146 research outputs found

    Invariance properties of random vectors and stochastic processes based on the zonoid concept

    Get PDF
    Two integrable random vectors ξ\xi and ξ∗\xi^* in Rd\mathbb {R}^d are said to be zonoid equivalent if, for each u∈Rdu\in \mathbb {R}^d, the scalar products ⟨ξ,u⟩\langle\xi,u\rangle and ⟨ξ∗,u⟩\langle\xi^*,u\rangle have the same first absolute moments. The paper analyses stochastic processes whose finite-dimensional distributions are zonoid equivalent with respect to time shift (zonoid stationarity) and permutation of its components (swap invariance). While the first concept is weaker than the stationarity, the second one is a weakening of the exchangeability property. It is shown that nonetheless the ergodic theorem holds for swap-invariant sequences and the limits are characterised.Comment: Published in at http://dx.doi.org/10.3150/13-BEJ519 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    No-signaling, perfect bipartite dichotomic correlations and local randomness

    Get PDF
    The no-signaling constraint on bi-partite correlations is reviewed. It is shown that in order to obtain non-trivial Bell-type inequalities that discern no-signaling correlations from more general ones, one must go beyond considering expectation values of products of observables only. A new set of nontrivial no-signaling inequalities is derived which have a remarkably close resemblance to the CHSH inequality, yet are fundamentally different. A set of inequalities by Roy and Singh and Avis et al., which is claimed to be useful for discerning no-signaling correlations, is shown to be trivially satisfied by any correlation whatsoever. Finally, using the set of newly derived no-signaling inequalities a result with potential cryptographic consequences is proven: if different parties use identical devices, then, once they have perfect correlations at spacelike separation between dichotomic observables, they know that because of no-signaling the local marginals cannot but be completely random.Comment: Published in 'Proceedings of the International Conference Advances in Quantum Theory', AIP Conference Proceedings, vol. 1327, 2011. pp. 36-5

    Bayesian inference for bivariate ranks

    Full text link
    A recommender system based on ranks is proposed, where an expert's ranking of a set of objects and a user's ranking of a subset of those objects are combined to make a prediction of the user's ranking of all objects. The rankings are assumed to be induced by latent continuous variables corresponding to the grades assigned by the expert and the user to the objects. The dependence between the expert and user grades is modelled by a copula in some parametric family. Given a prior distribution on the copula parameter, the user's complete ranking is predicted by the mode of the posterior predictive distribution of the user's complete ranking conditional on the expert's complete and the user's incomplete rankings. Various Markov chain Monte-Carlo algorithms are proposed to approximate the predictive distribution or only its mode. The predictive distribution can be obtained exactly for the Farlie-Gumbel-Morgenstern copula family, providing a benchmark for the approximation accuracy of the algorithms. The method is applied to the MovieLens 100k dataset with a Gaussian copula modelling dependence between the expert's and user's grades.Comment: 21 page

    Random Metric Spaces and Universality

    Full text link
    WWe define the notion of a random metric space and prove that with probability one such a space is isometricto the Urysohn universal metric space. The main technique is the study of universal and random distance matrices; we relate the properties of metric (in particulary universal) space to the properties of distance matrices. We show the link between those questions and classification of the Polish spaces with measure (Gromov or metric triples) and with the problem about S_{\infty}-invariant measures in the space of symmetric matrices. One of the new effects -exsitence in Urysohn space so called anarchical uniformly distributed sequences. We give examples of other categories in which the randomness and universality coincide (graph, etc.).Comment: 38 PAGE

    Second-Order Weight Distributions

    Full text link
    A fundamental property of codes, the second-order weight distribution, is proposed to solve the problems such as computing second moments of weight distributions of linear code ensembles. A series of results, parallel to those for weight distributions, is established for second-order weight distributions. In particular, an analogue of MacWilliams identities is proved. The second-order weight distributions of regular LDPC code ensembles are then computed. As easy consequences, the second moments of weight distributions of regular LDPC code ensembles are obtained. Furthermore, the application of second-order weight distributions in random coding approach is discussed. The second-order weight distributions of the ensembles generated by a so-called 2-good random generator or parity-check matrix are computed, where a 2-good random matrix is a kind of generalization of the uniformly distributed random matrix over a finite filed and is very useful for solving problems that involve pairwise or triple-wise properties of sequences. It is shown that the 2-good property is reflected in the second-order weight distribution, which thus plays a fundamental role in some well-known problems in coding theory and combinatorics. An example of linear intersecting codes is finally provided to illustrate this fact.Comment: 10 pages, accepted for publication in IEEE Transactions on Information Theory, May 201
    • …
    corecore