186,746 research outputs found

    Optimal sampling strategies for multiscale stochastic processes

    Full text link
    In this paper, we determine which non-random sampling of fixed size gives the best linear predictor of the sum of a finite spatial population. We employ different multiscale superpopulation models and use the minimum mean-squared error as our optimality criterion. In multiscale superpopulation tree models, the leaves represent the units of the population, interior nodes represent partial sums of the population, and the root node represents the total sum of the population. We prove that the optimal sampling pattern varies dramatically with the correlation structure of the tree nodes. While uniform sampling is optimal for trees with ``positive correlation progression'', it provides the worst possible sampling with ``negative correlation progression.'' As an analysis tool, we introduce and study a class of independent innovations trees that are of interest in their own right. We derive a fast water-filling algorithm to determine the optimal sampling of the leaves to estimate the root of an independent innovations tree.Comment: Published at http://dx.doi.org/10.1214/074921706000000509 in the IMS Lecture Notes--Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Homometric sets in trees

    Full text link
    Let G=(V,E)G = (V,E) denote a simple graph with the vertex set VV and the edge set EE. The profile of a vertex set V′⊆VV'\subseteq V denotes the multiset of pairwise distances between the vertices of V′V'. Two disjoint subsets of VV are \emph{homometric}, if their profiles are the same. If GG is a tree on nn vertices we prove that its vertex sets contains a pair of disjoint homometric subsets of size at least n/2−1\sqrt{n/2} - 1. Previously it was known that such a pair of size at least roughly n1/3n^{1/3} exists. We get a better result in case of haircomb trees, in which we are able to find a pair of disjoint homometric sets of size at least cn2/3cn^{2/3} for a constant c>0c > 0

    Reconstruction Threshold for the Hardcore Model

    Full text link
    In this paper we consider the reconstruction problem on the tree for the hardcore model. We determine new bounds for the non-reconstruction regime on the k-regular tree showing non-reconstruction when lambda < (ln 2-o(1))ln^2(k)/(2 lnln(k)) improving the previous best bound of lambda < e-1. This is almost tight as reconstruction is known to hold when lambda> (e+o(1))ln^2(k). We discuss the relationship for finding large independent sets in sparse random graphs and to the mixing time of Markov chains for sampling independent sets on trees.Comment: 14 pages, 2 figure
    • …
    corecore