45,602 research outputs found

    From Quantum ANA_N to E8E_8 Trigonometric Model: Space-of-Orbits View

    Full text link
    A number of affine-Weyl-invariant integrable and exactly-solvable quantum models with trigonometric potentials is considered in the space of invariants (the space of orbits). These models are completely-integrable and admit extra particular integrals. All of them are characterized by (i) a number of polynomial eigenfunctions and quadratic in quantum numbers eigenvalues for exactly-solvable cases, (ii) a factorization property for eigenfunctions, (iii) a rational form of the potential and the polynomial entries of the metric in the Laplace-Beltrami operator in terms of affine-Weyl (exponential) invariants (the same holds for rational models when polynomial invariants are used instead of exponential ones), they admit (iv) an algebraic form of the gauge-rotated Hamiltonian in the exponential invariants (in the space of orbits) and (v) a hidden algebraic structure. A hidden algebraic structure for (A-B-C{-D)-models, both rational and trigonometric, is related to the universal enveloping algebra UglnU_{gl_n}. For the exceptional (GFE)(G-F-E)-models, new, infinite-dimensional, finitely-generated algebras of differential operators occur. Special attention is given to the one-dimensional model with BC1(Z2)TBC_1\equiv(\mathbb{Z}_2)\oplus T symmetry. In particular, the BC1BC_1 origin of the so-called TTW model is revealed. This has led to a new quasi-exactly solvable model on the plane with the hidden algebra sl(2)sl(2)sl(2)\oplus sl(2).Comment: arXiv admin note: substantial text overlap with arXiv:1106.501

    PAC-Bayesian bounds for learning LTI-ss systems with input from empirical loss

    Full text link
    In this paper we derive a Probably Approxilmately Correct(PAC)-Bayesian error bound for linear time-invariant (LTI) stochastic dynamical systems with inputs. Such bounds are widespread in machine learning, and they are useful for characterizing the predictive power of models learned from finitely many data points. In particular, with the bound derived in this paper relates future average prediction errors with the prediction error generated by the model on the data used for learning. In turn, this allows us to provide finite-sample error bounds for a wide class of learning/system identification algorithms. Furthermore, as LTI systems are a sub-class of recurrent neural networks (RNNs), these error bounds could be a first step towards PAC-Bayesian bounds for RNNs.Comment: arXiv admin note: text overlap with arXiv:2212.1483

    Unifying W-Algebras

    Full text link
    We show that quantum Casimir W-algebras truncate at degenerate values of the central charge c to a smaller algebra if the rank is high enough: Choosing a suitable parametrization of the central charge in terms of the rank of the underlying simple Lie algebra, the field content does not change with the rank of the Casimir algebra any more. This leads to identifications between the Casimir algebras themselves but also gives rise to new, `unifying' W-algebras. For example, the kth unitary minimal model of WA_n has a unifying W-algebra of type W(2,3,...,k^2 + 3 k + 1). These unifying W-algebras are non-freely generated on the quantum level and belong to a recently discovered class of W-algebras with infinitely, non-freely generated classical counterparts. Some of the identifications are indicated by level-rank-duality leading to a coset realization of these unifying W-algebras. Other unifying W-algebras are new, including e.g. algebras of type WD_{-n}. We point out that all unifying quantum W-algebras are finitely, but non-freely generated.Comment: 13 pages (plain TeX); BONN-TH-94-01, DFTT-15/9
    corecore