208 research outputs found

    A TQFT from quantum Teichm\"uller theory

    Full text link
    By using quantum Teichm\"uller theory, we construct a one parameter family of TQFT's on the categroid of admissible leveled shaped 3-manifolds.Comment: 41 pages, references added, Conjecture 1 and Theorem 5 correcte

    Chromatic Numbers of Simplicial Manifolds

    Full text link
    Higher chromatic numbers χs\chi_s of simplicial complexes naturally generalize the chromatic number χ1\chi_1 of a graph. In any fixed dimension dd, the ss-chromatic number χs\chi_s of dd-complexes can become arbitrarily large for sd/2s\leq\lceil d/2\rceil [6,18]. In contrast, χd+1=1\chi_{d+1}=1, and only little is known on χs\chi_s for d/2<sd\lceil d/2\rceil<s\leq d. A particular class of dd-complexes are triangulations of dd-manifolds. As a consequence of the Map Color Theorem for surfaces [29], the 2-chromatic number of any fixed surface is finite. However, by combining results from the literature, we will see that χ2\chi_2 for surfaces becomes arbitrarily large with growing genus. The proof for this is via Steiner triple systems and is non-constructive. In particular, up to now, no explicit triangulations of surfaces with high χ2\chi_2 were known. We show that orientable surfaces of genus at least 20 and non-orientable surfaces of genus at least 26 have a 2-chromatic number of at least 4. Via a projective Steiner triple systems, we construct an explicit triangulation of a non-orientable surface of genus 2542 and with face vector f=(127,8001,5334)f=(127,8001,5334) that has 2-chromatic number 5 or 6. We also give orientable examples with 2-chromatic numbers 5 and 6. For 3-dimensional manifolds, an iterated moment curve construction [18] along with embedding results [6] can be used to produce triangulations with arbitrarily large 2-chromatic number, but of tremendous size. Via a topological version of the geometric construction of [18], we obtain a rather small triangulation of the 3-dimensional sphere S3S^3 with face vector f=(167,1579,2824,1412)f=(167,1579,2824,1412) and 2-chromatic number 5.Comment: 22 pages, 11 figures, revised presentatio

    Computing trisections of 4-manifolds

    Full text link
    Algorithms that decompose a manifold into simple pieces reveal the geometric and topological structure of the manifold, showing how complicated structures are constructed from simple building blocks. This note describes a way to algorithmically construct a trisection, which describes a 44-dimensional manifold as a union of three 44-dimensional handlebodies. The complexity of the 44-manifold is captured in a collection of curves on a surface, which guide the gluing of the handelbodies. The algorithm begins with a description of a manifold as a union of pentachora, or 44-dimensional simplices. It transforms this description into a trisection. This results in the first explicit complexity bounds for the trisection genus of a 44-manifold in terms of the number of pentachora (44-simplices) in a triangulation.Comment: 15 pages, 9 figure

    A proof of the Teichm\"{u}ller TQFT volume conjecture for 737_3 knot

    Full text link
    In the generalized topological quantum field theory constructed by Andersen and Kashaev, invariants of 3-manifolds are defined given the combinatorial structure of a tetrahedral decomposition. Furthermore, a variant of the volume conjecture has been proposed in which the hyperbolic volume can be extracted from this invariant of the complementary space of the hyperbolic knot in an oriented 33-dimensional closed manifold. We prove that the reformulated volume conjecture holds for the complementary space of the hyperbolic knot 737_3 in S3S^3, given a specific tetrahedral decomposition.Comment: 57 pages, 15 figure

    Fundamental Computational Geometry on the GPU

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Discrete Geometry

    Get PDF
    A number of important recent developments in various branches of discrete geometry were presented at the workshop. The presentations illustrated both the diversity of the area and its strong connections to other fields of mathematics such as topology, combinatorics or algebraic geometry. The open questions abound and many of the results presented were obtained by young researchers, confirming the great vitality of discrete geometry
    corecore