2,343 research outputs found

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    On covering expander graphs by Hamilton cycles

    Full text link
    The problem of packing Hamilton cycles in random and pseudorandom graphs has been studied extensively. In this paper, we look at the dual question of covering all edges of a graph by Hamilton cycles and prove that if a graph with maximum degree Δ\Delta satisfies some basic expansion properties and contains a family of (1−o(1))Δ/2(1-o(1))\Delta/2 edge disjoint Hamilton cycles, then there also exists a covering of its edges by (1+o(1))Δ/2(1+o(1))\Delta/2 Hamilton cycles. This implies that for every α>0\alpha >0 and every p≥nα−1p \geq n^{\alpha-1} there exists a covering of all edges of G(n,p)G(n,p) by (1+o(1))np/2(1+o(1))np/2 Hamilton cycles asymptotically almost surely, which is nearly optimal.Comment: 19 pages. arXiv admin note: some text overlap with arXiv:some math/061275

    Hamilton cycles in sparse robustly expanding digraphs

    Get PDF
    The notion of robust expansion has played a central role in the solution of several conjectures involving the packing of Hamilton cycles in graphs and directed graphs. These and other results usually rely on the fact that every robustly expanding (di)graph with suitably large minimum degree contains a Hamilton cycle. Previous proofs of this require Szemer\'edi's Regularity Lemma and so this fact can only be applied to dense, sufficiently large robust expanders. We give a proof that does not use the Regularity Lemma and, indeed, we can apply our result to suitable sparse robustly expanding digraphs.Comment: Accepted for publication in The Electronic Journal of Combinatoric

    Hamilton cycles in quasirandom hypergraphs

    Get PDF
    We show that, for a natural notion of quasirandomness in kk-uniform hypergraphs, any quasirandom kk-uniform hypergraph on nn vertices with constant edge density and minimum vertex degree Ω(nk−1)\Omega(n^{k-1}) contains a loose Hamilton cycle. We also give a construction to show that a kk-uniform hypergraph satisfying these conditions need not contain a Hamilton ℓ\ell-cycle if k−ℓk-\ell divides kk. The remaining values of ℓ\ell form an interesting open question.Comment: 18 pages. Accepted for publication in Random Structures & Algorithm
    • …
    corecore