1,126 research outputs found

    Perfect sampling algorithm for Schur processes

    Full text link
    We describe random generation algorithms for a large class of random combinatorial objects called Schur processes, which are sequences of random (integer) partitions subject to certain interlacing conditions. This class contains several fundamental combinatorial objects as special cases, such as plane partitions, tilings of Aztec diamonds, pyramid partitions and more generally steep domino tilings of the plane. Our algorithm, which is of polynomial complexity, is both exact (i.e. the output follows exactly the target probability law, which is either Boltzmann or uniform in our case), and entropy optimal (i.e. it reads a minimal number of random bits as an input). The algorithm encompasses previous growth procedures for special Schur processes related to the primal and dual RSK algorithm, as well as the famous domino shuffling algorithm for domino tilings of the Aztec diamond. It can be easily adapted to deal with symmetric Schur processes and general Schur processes involving infinitely many parameters. It is more concrete and easier to implement than Borodin's algorithm, and it is entropy optimal. At a technical level, it relies on unified bijective proofs of the different types of Cauchy and Littlewood identities for Schur functions, and on an adaptation of Fomin's growth diagram description of the RSK algorithm to that setting. Simulations performed with this algorithm suggest interesting limit shape phenomena for the corresponding tiling models, some of which are new.Comment: 26 pages, 19 figures (v3: final version, corrected a few misprints present in v2

    Computing a pyramid partition generating function with dimer shuffling

    Get PDF
    We verify a recent conjecture of Kenyon/Szendroi, arXiv:0705.3419, by computing the generating function for pyramid partitions. Pyramid partitions are closely related to Aztec Diamonds; their generating function turns out to be the partition function for the Donaldson--Thomas theory of a non-commutative resolution of the conifold singularity {x1x2 -x3x4 = 0}. The proof does not require algebraic geometry; it uses a modified version of the domino shuffling algorithm of Elkies, Kuperberg, Larsen and Propp.Comment: 19 pages, 13 figures. v2: fixed minor typos, updated references and future work; added some definitions to Section

    Alternating sign matrices and domino tilings

    Full text link
    We introduce a family of planar regions, called Aztec diamonds, and study the ways in which these regions can be tiled by dominoes. Our main result is a generating function that not only gives the number of domino tilings of the Aztec diamond of order nn but also provides information about the orientation of the dominoes (vertical versus horizontal) and the accessibility of one tiling from another by means of local modifications. Several proofs of the formula are given. The problem turns out to have connections with the alternating sign matrices of Mills, Robbins, and Rumsey, as well as the square ice model studied by Lieb

    Limits of Multilevel TASEP and similar processes

    Full text link
    We study the asymptotic behavior of a class of stochastic dynamics on interlacing particle configurations (also known as Gelfand-Tsetlin patterns). Examples of such dynamics include, in particular, a multi-layer extension of TASEP and particle dynamics related to the shuffling algorithm for domino tilings of the Aztec diamond. We prove that the process of reflected interlacing Brownian motions introduced by Warren in \cite{W} serves as a universal scaling limit for such dynamics.Comment: 16 pages, 1 figur
    corecore