4,523 research outputs found

    Limited-Magnitude Error-Correcting Gray Codes for Rank Modulation

    Full text link
    We construct Gray codes over permutations for the rank-modulation scheme, which are also capable of correcting errors under the infinity-metric. These errors model limited-magnitude or spike errors, for which only single-error-detecting Gray codes are currently known. Surprisingly, the error-correcting codes we construct achieve a better asymptotic rate than that of presently known constructions not having the Gray property, and exceed the Gilbert-Varshamov bound. Additionally, we present efficient ranking and unranking procedures, as well as a decoding procedure that runs in linear time. Finally, we also apply our methods to solve an outstanding issue with error-detecting rank-modulation Gray codes (snake-in-the-box codes) under a different metric, the Kendall Ď„\tau-metric, in the group of permutations over an even number of elements S2nS_{2n}, where we provide asymptotically optimal codes.Comment: Revised version for journal submission. Additional results include more tight auxiliary constructions, a decoding shcema, ranking/unranking procedures, and application to snake-in-the-box codes under the Kendall tau-metri

    Check-hybrid GLDPC Codes: Systematic Elimination of Trapping Sets and Guaranteed Error Correction Capability

    Full text link
    In this paper, we propose a new approach to construct a class of check-hybrid generalized low-density parity-check (CH-GLDPC) codes which are free of small trapping sets. The approach is based on converting some selected check nodes involving a trapping set into super checks corresponding to a 2-error correcting component code. Specifically, we follow two main purposes to construct the check-hybrid codes; first, based on the knowledge of the trapping sets of the global LDPC code, single parity checks are replaced by super checks to disable the trapping sets. We show that by converting specified single check nodes, denoted as critical checks, to super checks in a trapping set, the parallel bit flipping (PBF) decoder corrects the errors on a trapping set and hence eliminates the trapping set. The second purpose is to minimize the rate loss caused by replacing the super checks through finding the minimum number of such critical checks. We also present an algorithm to find critical checks in a trapping set of column-weight 3 LDPC code and then provide upper bounds on the minimum number of such critical checks such that the decoder corrects all error patterns on elementary trapping sets. Moreover, we provide a fixed set for a class of constructed check-hybrid codes. The guaranteed error correction capability of the CH-GLDPC codes is also studied. We show that a CH-GLDPC code in which each variable node is connected to 2 super checks corresponding to a 2-error correcting component code corrects up to 5 errors. The results are also extended to column-weight 4 LDPC codes. Finally, we investigate the eliminating of trapping sets of a column-weight 3 LDPC code using the Gallager B decoding algorithm and generalize the results obtained for the PBF for the Gallager B decoding algorithm

    Permutation Decoding and the Stopping Redundancy Hierarchy of Cyclic and Extended Cyclic Codes

    Full text link
    We introduce the notion of the stopping redundancy hierarchy of a linear block code as a measure of the trade-off between performance and complexity of iterative decoding for the binary erasure channel. We derive lower and upper bounds for the stopping redundancy hierarchy via Lovasz's Local Lemma and Bonferroni-type inequalities, and specialize them for codes with cyclic parity-check matrices. Based on the observed properties of parity-check matrices with good stopping redundancy characteristics, we develop a novel decoding technique, termed automorphism group decoding, that combines iterative message passing and permutation decoding. We also present bounds on the smallest number of permutations of an automorphism group decoder needed to correct any set of erasures up to a prescribed size. Simulation results demonstrate that for a large number of algebraic codes, the performance of the new decoding method is close to that of maximum likelihood decoding.Comment: 40 pages, 6 figures, 10 tables, submitted to IEEE Transactions on Information Theor

    Cyclic lowest density MDS array codes

    Get PDF
    Three new families of lowest density maximum-distance separable (MDS) array codes are constructed, which are cyclic or quasi-cyclic. In addition to their optimal redundancy (MDS) and optimal update complexity (lowest density), the symmetry offered by the new codes can be utilized for simplified implementation in storage applications. The proof of the code properties has an indirect structure: first MDS codes that are not cyclic are constructed, and then transformed to cyclic codes by a minimum-distance preserving transformation

    Cyclic Quantum Error-Correcting Codes and Quantum Shift Registers

    Get PDF
    We transfer the concept of linear feed-back shift registers to quantum circuits. It is shown how to use these quantum linear shift registers for encoding and decoding cyclic quantum error-correcting codes.Comment: 18 pages, 15 figures, submitted to Proc. R. Soc.
    • …
    corecore