2,725 research outputs found

    Bounding Option Prices Using SDP With Change Of Numeraire

    Get PDF
    Recently, given the first few moments, tight upper and lower bounds of the no arbitrage prices can be obtained by solving semidefinite programming (SDP) or linear programming (LP) problems. In this paper, we compare SDP and LP formulations of the European-style options pricing problem and prefer SDP formulations due to the simplicity of moments constraints. We propose to employ the technique of change of numeraire when using SDP to bound the European type of options. In fact, this problem can then be cast as a truncated Hausdorff moment problem which has necessary and sufficient moment conditions expressed by positive semidefinite moment and localizing matrices. With four moments information we show stable numerical results for bounding European call options and exchange options. Moreover, A hedging strategy is also identified by the dual formulation.moments of measures, semidefinite programming, linear programming, options pricing, change of numeraire

    Nonlinear Integer Programming

    Full text link
    Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009, ISBN 354068274

    An optimization framework for solving capacitated multi-level lot-sizing problems with backlogging

    Get PDF
    This paper proposes two new mixed integer programming models for capacitated multi-level lot-sizing problems with backlogging, whose linear programming relaxations provide good lower bounds on the optimal solution value. We show that both of these strong formulations yield the same lower bounds. In addition to these theoretical results, we propose a new, effective optimization framework that achieves high quality solutions in reasonable computational time. Computational results show that the proposed optimization framework is superior to other well-known approaches on several important performance dimensions

    Column-Randomized Linear Programs: Performance Guarantees and Applications

    Full text link
    We propose a randomized method for solving linear programs with a large number of columns but a relatively small number of constraints. Since enumerating all the columns is usually unrealistic, such linear programs are commonly solved by column generation, which is often still computationally challenging due to the intractability of the subproblem in many applications. Instead of iteratively introducing one column at a time as in column generation, our proposed method involves sampling a collection of columns according to a user-specified randomization scheme and solving the linear program consisting of the sampled columns. While similar methods for solving large-scale linear programs by sampling columns (or, equivalently, sampling constraints in the dual) have been proposed in the literature, in this paper we derive an upper bound on the optimality gap that holds with high probability and converges with rate 1/K1/\sqrt{K}, where KK is the number of sampled columns, to the value of a linear program related to the sampling distribution. To the best of our knowledge, this is the first paper addressing the convergence of the optimality gap for sampling columns/constraints in generic linear programs without additional assumptions on the problem structure and sampling distribution. We further apply the proposed method to various applications, such as linear programs with totally unimodular constraints, Markov decision processes, covering problems and packing problems, and derive problem-specific performance guarantees. We also generalize the method to the case that the sampled columns may not be statistically independent. Finally, we numerically demonstrate the effectiveness of the proposed method in the cutting-stock problem and in nonparametric choice model estimation
    corecore