110,840 research outputs found

    Efficient Algorithms for Computing Approximate Equilibria in Bimatrix, Polymatrix and Lipschitz Games

    Get PDF
    In this thesis, we study the problem of computing approximate equilibria in several classes of games. In particular, we study approximate Nash equilibria and approximate well-supported Nash equilibria in polymatrix and bimatrix games and approximate equilibria in Lipschitz games, penalty games and biased games. We construct algorithms for computing approximate equilibria that beat the cur- rent best algorithms for these problems. In Chapter 3, we present a distributed method to compute approximate Nash equilibria in bimatrix games. In contrast to previous approaches that analyze the two payoff matrices at the same time (for example, by solving a single LP that combines the two players’ payoffs), our algorithm first solves two independent LPs, each of which is derived from one of the two payoff matrices, and then computes an approximate Nash equilibrium using only limited communication between the players. In Chapter 4, we present an algorithm that, for every ÎŽ in the range 0 < ÎŽ ≀ 0.5, finds a (0.5+ÎŽ)-Nash equilibrium of a polymatrix game in time polynomial in the input size and 1 . Note that our approximation guarantee does not depend on ÎŽ the number of players, a property that was not previously known to be achievable for polymatrix games, and still cannot be achieved for general strategic-form games. In Chapter 5, we present an approximation-preserving reduction from the problem of computing an approximate Bayesian Nash equilibrium (Δ-BNE) for a two-player Bayesian game to the problem of computing an Δ-NE of a polymatrix game and thus show that the algorithm of Chapter 4 can be applied to two-player Bayesian games. Furthermore, we provide a simple polynomial-time algorithm for computing a 0.5-BNE. In Chapter 5, we study games with non-linear utility functions for the players. Our key insight is that Lipschitz continuity of the utility function allows us to provide algorithms for finding approximate equilibria in these games. We begin by studying Lipschitz games, which encompass, for example, all concave games with Lipschitz continuous payoff functions. We provide an efficient algorithm for computing approximate equilibria in these games. Then we turn our attention to penalty games, which encompass biased games and games in which players take risk into account. Here we show that if the penalty function is Lipschitz continuous, then we can provide a quasi-polynomial time approximation scheme. Finally, we study distance biased games, where we present simple strongly poly- nomial time algorithms for finding best responses in L1, L2, and L∞ biased games, and then use these algorithms to provide strongly polynomial algorithms that find 2/3, 5/7, and 2/3 approximations for these norms, respectively

    On the optimality of the uniform random strategy

    Full text link
    The concept of biased Maker-Breaker games, introduced by Chv\'atal and Erd{\H o}s, is a central topic in the field of positional games, with deep connections to the theory of random structures. For any given hypergraph H{\cal H} the main questions is to determine the smallest bias q(H)q({\cal H}) that allows Breaker to force that Maker ends up with an independent set of H{\cal H}. Here we prove matching general winning criteria for Maker and Breaker when the game hypergraph satisfies a couple of natural `container-type' regularity conditions about the degree of subsets of its vertices. This will enable us to derive a hypergraph generalization of the HH-building games, studied for graphs by Bednarska and {\L}uczak. Furthermore, we investigate the biased version of generalizations of the van der Waerden games introduced by Beck. We refer to these generalizations as Rado games and determine their threshold bias up to constant factors by applying our general criteria. We find it quite remarkable that a purely game theoretic deterministic approach provides the right order of magnitude for such a wide variety of hypergraphs, when the generalizations to hypergraphs in the analogous setup of sparse random discrete structures are usually quite challenging.Comment: 26 page

    Positional games on random graphs

    Full text link
    We introduce and study Maker/Breaker-type positional games on random graphs. Our main concern is to determine the threshold probability pFp_{F} for the existence of Maker's strategy to claim a member of FF in the unbiased game played on the edges of random graph G(n,p)G(n,p), for various target families FF of winning sets. More generally, for each probability above this threshold we study the smallest bias bb such that Maker wins the (1 b)(1\:b) biased game. We investigate these functions for a number of basic games, like the connectivity game, the perfect matching game, the clique game and the Hamiltonian cycle game

    Generating random graphs in biased Maker-Breaker games

    Full text link
    We present a general approach connecting biased Maker-Breaker games and problems about local resilience in random graphs. We utilize this approach to prove new results and also to derive some known results about biased Maker-Breaker games. In particular, we show that for b=o(n)b=o\left(\sqrt{n}\right), Maker can build a pancyclic graph (that is, a graph that contains cycles of every possible length) while playing a (1:b)(1:b) game on E(Kn)E(K_n). As another application, we show that for b=Θ(n/ln⁡n)b=\Theta\left(n/\ln n\right), playing a (1:b)(1:b) game on E(Kn)E(K_n), Maker can build a graph which contains copies of all spanning trees having maximum degree Δ=O(1)\Delta=O(1) with a bare path of linear length (a bare path in a tree TT is a path with all interior vertices of degree exactly two in TT)

    The Effect of Biased Communications On Both Trusting and Suspicious Voters

    Full text link
    In recent studies of political decision-making, apparently anomalous behavior has been observed on the part of voters, in which negative information about a candidate strengthens, rather than weakens, a prior positive opinion about the candidate. This behavior appears to run counter to rational models of decision making, and it is sometimes interpreted as evidence of non-rational "motivated reasoning". We consider scenarios in which this effect arises in a model of rational decision making which includes the possibility of deceptive information. In particular, we will consider a model in which there are two classes of voters, which we will call trusting voters and suspicious voters, and two types of information sources, which we will call unbiased sources and biased sources. In our model, new data about a candidate can be efficiently incorporated by a trusting voter, and anomalous updates are impossible; however, anomalous updates can be made by suspicious voters, if the information source mistakenly plans for an audience of trusting voters, and if the partisan goals of the information source are known by the suspicious voter to be "opposite" to his own. Our model is based on a formalism introduced by the artificial intelligence community called "multi-agent influence diagrams", which generalize Bayesian networks to settings involving multiple agents with distinct goals

    Fast strategies in biased Maker--Breaker games

    Full text link
    We study the biased (1:b)(1:b) Maker--Breaker positional games, played on the edge set of the complete graph on nn vertices, KnK_n. Given Breaker's bias bb, possibly depending on nn, we determine the bounds for the minimal number of moves, depending on bb, in which Maker can win in each of the two standard graph games, the Perfect Matching game and the Hamilton Cycle game
    • 

    corecore