2,264 research outputs found

    Random curves on surfaces induced from the Laplacian determinant

    Full text link
    We define natural probability measures on cycle-rooted spanning forests (CRSFs) on graphs embedded on a surface with a Riemannian metric. These measures arise from the Laplacian determinant and depend on the choice of a unitary connection on the tangent bundle to the surface. We show that, for a sequence of graphs (Gn)(G_n) conformally approximating the surface, the measures on CRSFs of GnG_n converge and give a limiting probability measure on finite multicurves (finite collections of pairwise disjoint simple closed curves) on the surface, independent of the approximating sequence. Wilson's algorithm for generating spanning trees on a graph generalizes to a cycle-popping algorithm for generating CRSFs for a general family of weights on the cycles. We use this to sample the above measures. The sampling algorithm, which relates these measures to the loop-erased random walk, is also used to prove tightness of the sequence of measures, a key step in the proof of their convergence. We set the framework for the study of these probability measures and their scaling limits and state some of their properties

    Parameterized Approximation for Maximum Weight Independent Set of Rectangles and Segments

    Get PDF
    In the Maximum Weight Independent Set of Rectangles problem (MWISR) we aregiven a weighted set of nn axis-parallel rectangles in the plane. The task isto find a subset of pairwise non-overlapping rectangles with the maximumpossible total weight. This problem is NP-hard and the best-knownpolynomial-time approximation algorithm, due to by Chalermsook and Walczak(SODA 2021), achieves approximation factor O(loglogn)O(\log\log n ). While in theunweighted setting, constant factor approximation algorithms are known, due toMitchell (FOCS 2021) and to G\'alvez et al. (SODA 2022), it remains open toextend these techniques to the weighted setting. In this paper, we consider MWISR through the lens of parameterizedapproximation. Grandoni et al. (ESA 2019) gave a (1ϵ)(1-\epsilon)-approximationalgorithm with running time kO(k/ϵ8)nO(1/ϵ8)k^{O(k/\epsilon^8)} n^{O(1/\epsilon^8)} time,where kk is the number of rectangles in an optimum solution. Unfortunately,their algorithm works only in the unweighted setting and they left it as anopen problem to give a parameterized approximation scheme in the weightedsetting. Our contribution is a partial answer to the open question of Grandoni et al.(ESA 2019). We give a parameterized approximation algorithm for MWISR thatgiven a parameter kk, finds a set of non-overlapping rectangles of weight atleast (1ϵ)optk(1-\epsilon) \text{opt}_k in 2O(klog(k/ϵ))nO(1/ϵ)2^{O(k \log(k/\epsilon))}n^{O(1/\epsilon)} time, where optk\text{opt}_k is the maximum weight of asolution of cardinality at most kk. Note that thus, our algorithm may return asolution consisting of more than kk rectangles. To complement this apparentweakness, we also propose a parameterized approximation scheme with runningtime 2O(k2log(k/ϵ))nO(1)2^{O(k^2 \log(k/\epsilon))} n^{O(1)} that finds a solution withcardinality at most kk and total weight at least (1ϵ)optk(1-\epsilon)\text{opt}_kfor the special case of axis-parallel segments.<br

    On Tree-Constrained Matchings and Generalizations

    Get PDF
    We consider the following \textsc{Tree-Constrained Bipartite Matching} problem: Given two rooted trees T1=(V1,E1)T_1=(V_1,E_1), T2=(V2,E2)T_2=(V_2,E_2) and a weight function w:V1×V2R+w: V_1\times V_2 \mapsto \mathbb{R}_+, find a maximum weight matching M\mathcal{M} between nodes of the two trees, such that none of the matched nodes is an ancestor of another matched node in either of the trees. This generalization of the classical bipartite matching problem appears, for example, in the computational analysis of live cell video data. We show that the problem is APX\mathcal{APX}-hard and thus, unless P=NP\mathcal{P} = \mathcal{NP}, disprove a previous claim that it is solvable in polynomial time. Furthermore, we give a 22-approximation algorithm based on a combination of the local ratio technique and a careful use of the structure of basic feasible solutions of a natural LP-relaxation, which we also show to have an integrality gap of 2o(1)2-o(1). In the second part of the paper, we consider a natural generalization of the problem, where trees are replaced by partially ordered sets (posets). We show that the local ratio technique gives a 2kρ2k\rho-approximation for the kk-dimensional matching generalization of the problem, in which the maximum number of incomparable elements below (or above) any given element in each poset is bounded by ρ\rho. We finally give an almost matching integrality gap example, and an inapproximability result showing that the dependence on ρ\rho is most likely unavoidable

    Approximation Schemes for Maximum Weight Independent Set of Rectangles

    Full text link
    In the Maximum Weight Independent Set of Rectangles (MWISR) problem we are given a set of n axis-parallel rectangles in the 2D-plane, and the goal is to select a maximum weight subset of pairwise non-overlapping rectangles. Due to many applications, e.g. in data mining, map labeling and admission control, the problem has received a lot of attention by various research communities. We present the first (1+epsilon)-approximation algorithm for the MWISR problem with quasi-polynomial running time 2^{poly(log n/epsilon)}. In contrast, the best known polynomial time approximation algorithms for the problem achieve superconstant approximation ratios of O(log log n) (unweighted case) and O(log n / log log n) (weighted case). Key to our results is a new geometric dynamic program which recursively subdivides the plane into polygons of bounded complexity. We provide the technical tools that are needed to analyze its performance. In particular, we present a method of partitioning the plane into small and simple areas such that the rectangles of an optimal solution are intersected in a very controlled manner. Together with a novel application of the weighted planar graph separator theorem due to Arora et al. this allows us to upper bound our approximation ratio by (1+epsilon). Our dynamic program is very general and we believe that it will be useful for other settings. In particular, we show that, when parametrized properly, it provides a polynomial time (1+epsilon)-approximation for the special case of the MWISR problem when each rectangle is relatively large in at least one dimension. Key to this analysis is a method to tile the plane in order to approximately describe the topology of these rectangles in an optimal solution. This technique might be a useful insight to design better polynomial time approximation algorithms or even a PTAS for the MWISR problem

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum
    corecore