7 research outputs found

    Functionality, Polymorphism, and Concurrency: A Mathematical Investigation of Programming Paradigms

    Get PDF
    The search for mathematical models of computational phenomena often leads to problems that are of independent mathematical interest. Selected problems of this kind are investigated in this thesis. First, we study models of the untyped lambda calculus. Although many familiar models are constructed by order-theoretic methods, it is also known that there are some models of the lambda calculus that cannot be non-trivially ordered. We show that the standard open and closed term algebras are unorderable. We characterize the absolutely unorderable T-algebras in any algebraic variety T. Here an algebra is called absolutely unorderable if it cannot be embedded in an orderable algebra. We then introduce a notion of finite models for the lambda calculus, contrasting the known fact that models of the lambda calculus, in the traditional sense, are always non-recursive. Our finite models are based on Plotkin’s syntactical models of reduction. We give a method for constructing such models, and some examples that show how finite models can yield useful information about terms. Next, we study models of typed lambda calculi. Models of the polymorphic lambda calculus can be divided into environment-style models, such as Bruce and Meyer’s non-strict set-theoretic models, and categorical models, such as Seely’s interpretation in PL-categories. Reynolds has shown that there are no set-theoretic strict models. Following a different approach, we investigate a notion of non-strict categorical models. These provide a uniform framework in which one can describe various classes of non-strict models, including set-theoretic models with or without empty types, and Kripke-style models. We show that completeness theorems correspond to categorical representation theorems, and we reprove a completeness result by Meyer et al. on set-theoretic models of the simply-typed lambda calculus with possibly empty types. Finally, we study properties of asynchronous communication in networks of communicating processes. We formalize several notions of asynchrony independently of any particular concurrent process paradigm. A process is asynchronous if its input and/or output is filtered through a communication medium, such as a buffer or a queue, possibly with feedback. We prove that the behavior of asynchronous processes can be equivalently characterized by first-order axioms

    Ordered models of the lambda calculus

    Get PDF
    Answering a question by Honsell and Plotkin, we show that there are two equations between lambda terms, the so-called subtractive equations, consistent with lambda calculus but not simultaneously satisfied in any partially ordered model with bottom element. We also relate the subtractive equations to the open problem of the order-incompleteness of lambda calculus, by studying the connection between the notion of absolute unorderability in a specific point and a weaker notion of subtractivity (namely n-subtractivity) for partially ordered algebras. Finally we study the relation between n-subtractivity and relativized separation conditions in topological algebras, obtaining an incompleteness theorem for a general topological semantics of lambda calculus

    Ordered Models of the Lambda Calculus

    Full text link

    A Note on Absolutely Unorderable Combinatory Algebras

    No full text
    Plotkin [18] has conjectured that there exists an absolutely unorderable combinatory algebra, i.e. an algebra which cannot be embedded in another algebra that admits a non-trivial compatible partial order. In this paper we prove that a wide class of combinatory algebras admits extensions with a non-trivial compatible partial order

    A note on absolutely unorderable combinatory algebras

    No full text
    Plotkin [16] has conjectured that there exists an absolutely unorderable combinatory algebra, namely a combinatory algebra which cannot be embedded in another combinatory algebra admitting a non-trivial compatible partial order. In this paper we prove that a wide class of combinatory algebras admits extensions with a non-trivial compatible partial order
    corecore