277,530 research outputs found

    Formulation of Complex Action Theory

    Full text link
    We formulate a complex action theory which includes operators of coordinate and momentum q^\hat{q} and p^\hat{p} being replaced with non-hermitian operators q^new\hat{q}_{new} and p^new\hat{p}_{new}, and their eigenstates m<newq{}_m <_{new} q | and m<newp{}_m <_{new} p | with complex eigenvalues qq and pp. Introducing a philosophy of keeping the analyticity in path integration variables, we define a modified set of complex conjugate, real and imaginary parts, hermitian conjugates and bras, and explicitly construct q^new\hat{q}_{new}, p^new\hat{p}_{new}, m<newq{}_m <_{new} q | and m<newp{}_m <_{new} p | by formally squeezing coherent states. We also pose a theorem on the relation between functions on the phase space and the corresponding operators. Only in our formalism can we describe a complex action theory or a real action theory with complex saddle points in the tunneling effect etc. in terms of bras and kets in the functional integral. Furthermore, in a system with a non-hermitian diagonalizable bounded Hamiltonian, we show that the mechanism to obtain a hermitian Hamiltonian after a long time development proposed in our letter works also in the complex coordinate formalism. If the hermitian Hamiltonian is given in a local form, a conserved probability current density can be constructed with two kinds of wave functions.Comment: 29 pages, 2 figures, references added, presentation improved, typos corrected. (v5)The definition of q^new\hat{q}_{new} and p^new\hat{p}_{new} are corrected by replacing them with their hermitian conjugates. The errors and typos mentioned in the errata of PTP are corrected. arXiv admin note: substantial text overlap with arXiv:1009.044

    Baxter operator formalism for Macdonald polynomials

    Get PDF
    We develop basic constructions of the Baxter operator formalism for the Macdonald polynomials associated with root systems of type A. Precisely we construct a dual pair of mutually commuting Baxter operators such that the Macdonald polynomials are their common eigenfunctions. The dual pair of Baxter operators is closely related to the dual pair of recursive operators for Macdonald polynomials leading to various families of their integral representations. We also construct the Baxter operator formalism for the q-deformed gl(l+1)-Whittaker functions and the Jack polynomials obtained by degenerations of the Macdonald polynomials associated with the type A_l root system. This note provides a generalization of our previous results on the Baxter operator formalism for the Whittaker functions. It was demonstrated previously that Baxter operator formalism for the Whittaker functions has deep connections with representation theory. In particular the Baxter operators should be considered as elements of appropriate spherical Hecke algebras and their eigenvalues are identified with local Archimedean L-factors associated with admissible representations of reductive groups over R. We expect that the Baxter operator formalism for the Macdonald polynomials has an interpretation in representation theory of higher-dimensional arithmetic fields.Comment: 22 pages, typos are fixe

    Operators on the Fréchet sequence space ces(p+), 1p<1 \leq p < \infty

    Full text link
    [EN] The Fréchet sequence spaces ces(p+) are very different to the Fréchet sequence spaces ¿p+,1¿pp}\ell ^q ℓ p + = ∩ q > p ℓ q . Math. Nachr. 147, 7–12 (1990)Pérez Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces. North Holland, Amsterdam (1987)Pitt, H.R.: A note on bilinear forms. J. Lond. Math. Soc. 11, 171–174 (1936)Ricker, W.J.: A spectral mapping theorem for scalar-type spectral operators in locally convex spaces. Integral Equ. Oper. Theory 8, 276–288 (1985)Robertson, A.P., Robertson, W.: Topological Vector Spaces. Cambridge University Press, Cambridge (1973)Waelbroeck, L.: Topological vector spaces and algebras. Lecture Notes in Mathematics, vol. 230. Springer, Berlin (1971

    Regularity of oscillatory integral operators

    Full text link
    In this paper, we establish the global boundedness of oscillatory integral operators on Besov-Lipschitz and Triebel-Lizorkin spaces, with amplitudes in general Sρ,δm(Rn)S^m_{\rho,\delta}(\mathbb{R}^n)-classes and non-degenerate phase functions in the class \textart F^k. Our results hold for a wide range of parameters 0ρ10\leq\rho\leq1, 0δ<10\leq\delta<1, 0<p0<p\leq\infty, 0<q0<q\leq\infty and k>0k>0. We also provide a sufficient condition for the boundedness of operators with amplitudes in the forbidden class S1,1m(Rn)S^m_{1,1}(\mathbb{R}^n) in Triebel-Lizorkin spaces.Comment: arXiv admin note: text overlap with arXiv:2302.0031

    Metrical Quantization

    Full text link
    Canonical quantization may be approached from several different starting points. The usual approaches involve promotion of c-numbers to q-numbers, or path integral constructs, each of which generally succeeds only in Cartesian coordinates. All quantization schemes that lead to Hilbert space vectors and Weyl operators---even those that eschew Cartesian coordinates---implicitly contain a metric on a flat phase space. This feature is demonstrated by studying the classical and quantum ``aggregations'', namely, the set of all facts and properties resident in all classical and quantum theories, respectively. Metrical quantization is an approach that elevates the flat phase space metric inherent in any canonical quantization to the level of a postulate. Far from being an unwanted structure, the flat phase space metric carries essential physical information. It is shown how the metric, when employed within a continuous-time regularization scheme, gives rise to an unambiguous quantization procedure that automatically leads to a canonical coherent state representation. Although attention in this paper is confined to canonical quantization we note that alternative, nonflat metrics may also be used, and they generally give rise to qualitatively different, noncanonical quantization schemes.Comment: 13 pages, LaTeX, no figures, to appear in Born X Proceeding

    Dynamics of the Volterra-type integral and differentiation operators on generalized Fock spaces

    Full text link
    [EN] Various dynamical properties of the differentiation and Volterra-type integral operators on generalized Fock spaces are studied. We show that the differentiation operator is always supercyclic on these spaces. We further characterize when it is hypercyclic, power bounded and uniformly mean ergodic. We prove that the operator satisfies the Ritt's resolvent condition if and only if it is power bounded and uniformly mean ergodic. Some similar results are obtained for the Volterra-type and Hardy integral operators.J. Bonet was partially supported by the research projects MTM2016-76647-P and GV Prometeo 2017/102 (Spain). M. Worku is supported by ISP project, Addis Ababa University, Ethiopia.Bonet Solves, JA.; Mengestie, T.; Worku, M. (2019). Dynamics of the Volterra-type integral and differentiation operators on generalized Fock spaces. Results in Mathematics. 74(4):1-15. https://doi.org/10.1007/s00025-019-1123-7S115744Abanin, A.V., Tien, P.T.: Differentiation and integration operators on weighted Banach spaces of holomorphic functions. Math. Nachr. 290(8–9), 1144–1162 (2017)Atzmon, A., Brive, B.: Surjectivity and invariant subspaces of differential operators on weighted Bergman spaces of entire functions, Bergman spaces and related topics in complex analysis, Contemp. Math., vol. 404, Amer. Math. Soc., Providence, RI, pp. 27–39 (2006)Bayart, F., Matheron, E.: Dynamics of Linear Operators, Cambridge Tracts in Math, vol. 179. Cambridge Univ. Press, Cambridge (2009)Bermúdez, T., Bonilla, A., Peris, A.: On hypercyclicity and supercyclicity criteria. Bull. Austral. Math. Soc. 70, 45–54 (2004)Beltrán, M.J.: Dynamics of differentiation and integration operators on weighted space of entire functions. Studia Math. 221, 35–60 (2014)Beltrán, M.J., Bonet, J., Fernández, C.: Classical operators on weighted Banach spaces of entire functions. Proc. Am. Math. Soc. 141, 4293–4303 (2013)Bès, J., Peris, A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167, 94–112 (1999)Bonet, J.: Dynamics of the differentiation operator on weighted spaces of entire functions. Math. Z. 26, 649–657 (2009)Bonet, J.: The spectrum of Volterra operators on weighted Banach spaces of entire functions. Q. J. Math. 66, 799–807 (2015)Bonet, J., Bonilla, A.: Chaos of the differentiation operator on weighted Banach spaces of entire functions. Complex Anal. Oper. Theory 7, 33–42 (2013)Bonet, J., Taskinen, J.: A note about Volterra operators on weighted Banach spaces of entire functions. Math. Nachr. 288, 1216–1225 (2015)Constantin, O., Persson, A.-M.: The spectrum of Volterra-type integration operators on generalized Fock spaces. Bull. Lond. Math. Soc. 47, 958–963 (2015)Constantin, O., Peláez, J.-Á.: Integral operators, embedding theorems and a Littlewood–Paley formula on weighted Fock spaces. J. Geom. Anal. 26, 1109–1154 (2016)De La Rosa, M., Read, C.: A hypercyclic operator whose direct sum is not hypercyclic. J. Oper. Theory 61, 369–380 (2009)Dunford, N.: Spectral theory. I. Convergence to projections. Trans. Am. Math. Soc. 54, 185–217 (1943)Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear Chaos. Springer, New York (2011)Harutyunyan, A., Lusky, W.: On the boundedness of the differentiation operator between weighted spaces of holomorphic functions. Studia Math. 184, 233–247 (2008)Krengel, U.: Ergodic Theorems. Walter de Gruyter, Berlin (1985)Lyubich, Yu.: Spectral localization, power boundedness and invariant subspaces under Ritt’s type condition. Studia Mathematica 143(2), 153–167 (1999)Mengestie, T.: A note on the differential operator on generalized Fock spaces. J. Math. Anal. Appl. 458(2), 937–948 (2018)Mengestie, T.: Spectral properties of Volterra-type integral operators on Fock–Sobolev spaces. J. Kor. Math. Soc. 54(6), 1801–1816 (2017)Mengestie, T.: On the spectrum of volterra-type integral operators on Fock–Sobolev spaces. Complex Anal. Oper. Theory 11(6), 1451–1461 (2017)Mengestie, T., Ueki, S.: Integral, differential and multiplication operators on weighted Fock spaces. Complex Anal. Oper. Theory 13, 935–95 (2019)Mengestie, T., Worku, M.: Isolated and essentially isolated Volterra-type integral operators on generalized Fock spaces. Integr. Transf. Spec. Funct. 30, 41–54 (2019)Nagy, B., Zemanek, J.A.: A resolvent condition implying power boundedness. Studia Math. 134, 143–151 (1999)Nevanlinna, O.: Convergence of iterations for linear equations. Lecture Notes in Mathematics. ETH Zürich, Birkhäuser, Basel (1993)Ritt, R.K.: A condition that limnn1Tn=0\lim _{n\rightarrow \infty } n^{-1}T^n =0. Proc. Am. Math. Soc. 4, 898–899 (1953)Ueki, S.: Characterization for Fock-type space via higher order derivatives and its application. Complex Anal. Oper. Theory 8, 1475–1486 (2014)Yosida, K.: Functional Analysis. Springer, Berlin (1978)Yosida, K., Kakutani, S.: Operator-theoretical treatment of Marko’s process and mean ergodic theorem. Ann. Math. 42(1), 188–228 (1941

    History operators in quantum mechanics

    Full text link
    It is convenient to describe a quantum system at all times by means of a "history operator" CC, encoding measurements and unitary time evolution between measurements. These operators naturally arise when computing the probability of measurement sequences, and generalize the "sum over position histories " of the Feynman path-integral. As we argue in the present note, this description has some computational advantages over the usual state vector description, and may help to clarify some issues regarding nonlocality of quantum correlations and collapse. A measurement on a system described by CC modifies the history operator, CPCC \rightarrow PC, where PP is the projector corresponding to the measurement. We refer to this modification as "history operator collapse". Thus CC keeps track of the succession of measurements on a system, and contains all histories compatible with the results of these measurements. The collapse modifies the history content of CC, and therefore modifies also the past (relative to the measurement), but never in a way to violate causality. Probabilities of outcomes are obtained as Tr(CPC)/Tr(CC)Tr(C^\dagger P C)/Tr(C^\dagger C). A similar formula yields probabilities for intermediate measurements, and reproduces the result of the two-vector formalism in the case of given initial and final states. We apply the history operator formalism to a few examples: entangler circuit, Mach-Zehnder interferometer, teleportation circuit, three-box experiment. Not surprisingly, the propagation of coordinate eigenstates q|q\rangle is described by a history operator CC containing the Feynman path-integral.Comment: 18 pages, 3 figures, LaTeX; V2: added section on three-box experiment, expanded section on history operators, added subsection on history amplitudes, added ref.s. V3: added ref., corrected typos and improved notation, matches version to be published in Int. Jou. of Quantum Informatio
    corecore