115 research outputs found

    Ship and Oil-Spill Detection Using the Degree of Polarization in Linear and Hybrid/Compact Dual-Pol SAR

    Get PDF
    Monitoring and detection of ships and oil spills using synthetic aperture radar (SAR) have received a considerable attention over the past few years, notably due to the wide area coverage and day and night all-weather capabilities of SAR systems. Among different polarimetric SAR modes, dual-pol SAR data are widely used for monitoring large ocean and coastal areas. The degree of polarization (DoP) is a fundamental quantity characterizing a partially polarized electromagnetic field, with significantly less computational complexity, readily adaptable for on-board implementation, compared with other well-known polarimetric discriminators. The performance of the DoP is studied for joint ship and oil-spill detection under different polarizations in hybrid/compact and linear dual-pol SAR imagery. Experiments are performed on RADARSAT-2 -band polarimetric data sets, over San Francisco Bay, and -band NASA/JPL UAVSAR data, covering the Deepwater Horizon oil spill in the Gulf of Mexico

    Offshore Metallic Platforms Observation Using Dual-Polarimetric TS-X/TD-X Satellite Imagery: A Case Study in the Gulf of Mexico

    Get PDF
    Satellite-based synthetic aperture radar (SAR) has been proven to be an effective tool for ship monitoring. Offshore platforms monitoring is a key topic for both safety and security of the maritime domain. However, the scientific literature oriented to the observation of offshore platforms using SAR imagery is very limited. This study is mostly focused on the analysis and understanding of the multipolarization behavior of platformsñ€ℱ backscattering using dual-polarization X-band SAR imagery. This study is motivated by the fact that under low incidence angle and moderate wind conditions, copolarized channels may fail in detecting offshore platforms even when fine-resolution imagery is considered. This behavior has been observed on both medium- and high-resolution TerraSAR-X/TanDEM-X SAR imagery, despite the fact that platforms consist of large metallic structures. Hence, a simple multipolarization model is proposed to analyze the platform backscattering. Model predictions are verified on TerraSAR-X/TanDEM-X SAR imagery, showing that for acquisitions under low incidence angle, the platforms result in a reduced copolarized backscattered intensity even when fine resolution imagery is considered. Finally, several solutions to tackle this issue are proposed with concluding remark that the performance of offshore observation

    Statistical tests for a ship detector based on the Polarimetric Notch Filter

    Get PDF
    Ship detection is an important topic in remote sensing and Synthetic Aperture Radar has a valuable contribution, allowing detection at night time and with almost any weather conditions. Additionally, polarimetry can play a significant role considering its capability to discriminate between different targets. Recently, a new ship detector exploiting polarimetric information was developed, namely the Geometrical Perturbation Polarimetric Notch Filter (GP-PNF). This work is focused on devising two statistical tests for the GP-PNF. The latter allow an automatic and adaptive selection of the detector threshold. Initially, the probability density function (pdf) of the detector is analytically derived. Finally, the Neyman-Pearson (NP) lemma is exploited to set the threshold calculating probabilities using the clutter pdf (i.e. a Constant False Alarm Rate, CFAR) and a likelihood ratio (LR). The goodness of fit of the clutter pdf is tested with four real SAR datasets acquired by the RADARSAT-2 and the TanDEM-X satellites. The former images are quad-polarimetric, while the latter are dual-polarimetric HH/VV. The data are accompanied by the Automatic Identification System (AIS) location of vessels, which facilitates the validation of the detection masks. It can be observed that the pdf's fit the data histograms and they pass the two sample Kolmogorov-Smirnov and χ2 tests

    Validating a notch filter for detection of targets at sea with ALOS-PALSAR data: Tokyo Bay

    Get PDF
    The surveillance of maritime areas is a major topic for security aimed at fighting issues as illegal trafficking, illegal fishing, piracy, etc. In this context, Synthetic Aperture Radar (SAR) has proven to be particularly beneficial due to its all-weather and night time acquisition capabilities. Moreover, the recent generation of satellites can provide high quality images with high resolution and polarimetric capabilities. This paper is devoted to the validation of a recently developed ship detector, the Geometrical Perturbations Polarimetric Notch Filter (GP-PNF) exploiting L-band polarimetric data. The algorithm is able to isolate the return coming from the sea background and trigger a detection if a target with different polarimetric behavior is present. Moreover, the algorithm is adaptive and is able to account for changes of sea clutter both in polarimetry and intensity. In this work, the GP-PNF is tested and validated for the first time ever with L-band data, exploiting one ALOS-PALSAR quad-pol dataset acquired on the 9th of October 2008 in Tokyo Bay. One of the motivations of the analysis is also the attempt of testing the suitability of GP-PNF to be used with the new generations of L-band satellites (e.g. ALOS-2). The acquisitions are accompanied by a ground truth performed with a video survey. A comparison with two other detectors is presented, one exploiting a single polarimetric channel and the other considering quad-polarimetric data. Moreover, a test exploiting dual-polarimetric modes (HH/VV and HH/HV) is performed. The GP-PNF shows the capability to detect targets presenting pixel intensity smaller than the surrounding sea clutter in some polarimetric channels. Finally, the quad-polarimetric GP-PNF outperformed in some situations the other two detectors

    A ship detector applying Principal Component Analysis to the polarimetric Notch Filter

    Get PDF
    Ship detection using polarimetric synthetic aperture radar (PolSAR) data has attracted a lot of attention in recent years. Polarimetry can provide information regarding the scattering mechanisms of targets, which helps discriminate between ships and sea clutter. This enhancement is particularly valuable when we aim at detecting smaller vessels in rough sea states. This work exploits a ship detector called the Geometrical Perturbation-Polarimetric Notch Filter (GP-PNF), and it is aimed at improving its performance especially when less polarimetric images are available (e.g., dual-polarimetric data). The idea is to design a new polarimetric feature vector containing more features that are renowned to allow separation between ships and sea clutter. Then, a Principal Component Analysis (PCA) is further used to reduce the dimensionality of the new feature space. Experiments on four real Sentinel-1 datasets are carried out to demonstrate the validity of the proposed method and compare it against other ship detectors. Analyses of the experimental results show that the proposed algorithm can not only reduce the false alarms significantly, but also enhance the target-to-clutter ratio (TCR) so that it can more effectively detect weaker ships

    Optimal polarimetric detection filter and its statistical tests for a ship detector

    Get PDF
    Ship detection is one important task in radar remote sensing. Moreover, Polarimetry shows a valuable contribution to discriminate between targets and clutter. The performance of most polarimetric detectors depends on two important factors: target clutter ratio (TCR) and speckles (or standard deviation to mean ratio of clutter background). The polarimetric matched filter (PMF) is just to maximize the TCR, while the polarimetric whitening filter (PWF) only takes the speckle reduction into consideration. In this paper, the optimal polarimetric detection filter (OPDF) is put forward, which considers maximizing the ratio of TCR to speckle. The approximate expression of the probability density function (PDF) of the OPDF is derived in closed form, so are the probability of false alarm (PFA) and the probability of detection (PD) in Wishart distribution assumption. The threshold of the OPDF detection can be easily obtained in closed form or via the bisection method. Experiments via simulated data validate the correctness of our results. The OPDF detector gives the best performance in most environments, especially in low PFA case and in the case where the statistics of targets is not the ideal Wishart distribution

    Robust CFAR Detector Based on Truncated Statistics for Polarimetric Synthetic Aperture Radar

    Get PDF
    Constant false alarm rate (CFAR) algorithms using a local training window are widely used for ship detection with synthetic aperture radar (SAR) imagery. However, when the density of the targets is high, such as in busy shipping lines and crowded harbors, the background statistics may be contaminated by the presence of nearby targets in the training window. Recently, a robust CFAR detector based on truncated statistics (TS) was proposed. However, the truncation of data in the format of polarimetric covariance matrices is much more complicated with respect to the truncation of intensity (single polarization) data. In this article, a polarimetric whitening filter TS CFAR (PWF-TS-CFAR) is proposed to estimate the background parameters accurately in the contaminated sea clutter for PolSAR imagery. The CFAR detector uses a polarimetric whitening filter (PWF) to turn the multidimensional problem to a 1-D case. It uses truncation to exclude possible statistically interfering outliers and uses TS to model the remaining background samples. The algorithm does not require prior knowledge of the interfering targets, and it is performed iteratively and adaptively to derive better estimates of the polarimetric covariance matrix (although this is computationally expensive). The PWF-TS-CFAR detector provides accurate background clutter modeling, a stable false alarm property, and improves the detection performance in high-target-density situations. RadarSat2 data are used to verify our derivations, and the results are in line with the theory

    CFAR Ship Detection in Polarimetric Synthetic Aperture Radar Images Based on Whitening Filter

    Get PDF
    Polarimetric whitening filter (PWF) can be used to filter polarimetric synthetic aperture radar (PolSAR) images to improve the contrast between ships and sea clutter background. For this reason, the output of the filter can be used to detect ships. This paper deals with the setting of the threshold over PolSAR images filtered by the PWF. Two parameter-constant false alarm rate (2P-CFAR) is a common detection method used on whitened polarimetric images. It assumes that the probability density function (PDF) of the filtered image intensity is characterized by a log-normal distribution. However, this assumption does not always hold. In this paper, we propose a systemic analytical framework for CFAR algorithms based on PWF or multi-look PWF (MPWF). The framework covers the entire log-cumulants space in terms of the textural distributions in the product model, including the constant, gamma, inverse gamma, Fisher, beta, inverse beta, and generalized gamma distributions (GΓDs). We derive the analytical forms of the PDF for each of the textural distributions and the probability of false alarm (PFA). Finally, the threshold is derived by fixing the false alarm rate (FAR). Experimental results using both the simulated and real data demonstrate that the derived expressions and CFAR algorithms are valid and robust

    Detection of Wind Turbines in Intertidal Areas Using SAR Polarimetry

    Get PDF
    The detection of wind turbines in a strong clutter background is analyzed at variance of polarimetric synthetic-aperture radar (SAR) configurations. The area of interest is the intertidal zone near Jiangsu, China and two detectors are used, the polarimetric notch filter (PNF) and a change detector that optimizes the ratio between covariance matrices. The detection performance is quantitatively analyzed using the receiver operating characteristic (ROC) curve, while the scattering mechanisms that characterize wind turbines are analyzed using the Yamaguchi decomposition. Experimental analysis shows that: 1) wind turbines result in a nontrivial scattering mechanism and 2) full-polarimetric measurements achieve the best detection performance independently of the two detectors
    • 

    corecore