621 research outputs found

    A Notation for Comonads

    Get PDF
    The category-theoretic concept of a monad occurs widely as a design pattern for functional programming with effects. The utility and ubiquity of monads is such that some languages provide syntactic sugar for this pattern, further encouraging its use. We argue that comonads, the dual of monads, similarly provide a useful design pattern, capturing notions of context dependence. However, comonads remain relatively under-used compared to monads—due to a lack of knowledge of the design pattern along with the lack of accompanying simplifying syntax. We propose a lightweight syntax for comonads in Haskell, analogous to the do-notation for monads, and provide examples of its use. Via our notation, we also provide a tutorial on programming with comonads

    Terminal semantics for codata types in intensional Martin-L\"of type theory

    Full text link
    In this work, we study the notions of relative comonad and comodule over a relative comonad, and use these notions to give a terminal coalgebra semantics for the coinductive type families of streams and of infinite triangular matrices, respectively, in intensional Martin-L\"of type theory. Our results are mechanized in the proof assistant Coq.Comment: 14 pages, ancillary files contain formalized proof in the proof assistant Coq; v2: 20 pages, title and abstract changed, give a terminal semantics for streams as well as for matrices, Coq proof files updated accordingl

    Conservative descent for semi-orthogonal decompositions

    Full text link
    Motivated by the local flavor of several well-known semi-orthogonal decompositions in algebraic geometry, we introduce a technique called conservative descent, which shows that it is enough to establish these decompositions locally. The decompositions we have in mind are those for projectivized vector bundles and blow-ups, due to Orlov, and root stacks, due to Ishii and Ueda. Our technique simplifies the proofs of these decompositions and establishes them in greater generality for arbitrary algebraic stacks.Comment: Final versio

    Pre-torsors and Galois comodules over mixed distributive laws

    Full text link
    We study comodule functors for comonads arising from mixed distributive laws. Their Galois property is reformulated in terms of a (so-called) regular arrow in Street's bicategory of comonads. Between categories possessing equalizers, we introduce the notion of a regular adjunction. An equivalence is proven between the category of pre-torsors over two regular adjunctions (NA,RA)(N_A,R_A) and (NB,RB)(N_B,R_B) on one hand, and the category of regular comonad arrows (RA,ξ)(R_A,\xi) from some equalizer preserving comonad C{\mathbb C} to NBRBN_BR_B on the other. This generalizes a known relationship between pre-torsors over equal commutative rings and Galois objects of coalgebras.Developing a bi-Galois theory of comonads, we show that a pre-torsor over regular adjunctions determines also a second (equalizer preserving) comonad D{\mathbb D} and a co-regular comonad arrow from D{\mathbb D} to NARAN_A R_A, such that the comodule categories of C{\mathbb C} and D{\mathbb D} are equivalent.Comment: 34 pages LaTeX file. v2: a few typos correcte

    Bicategories of spans as cartesian bicategories

    Get PDF
    Bicategories of spans are characterized as cartesian bicategories in which every comonad has an Eilenberg-Moore ob ject and every left adjoint arrow is comonadic
    • …
    corecore