2,495 research outputs found

    Automatic Assessment of Cardiac Left Ventricular Function Via Magnetic Resonance Images

    Get PDF
    Automating global and segmental (regional) assessments of cardiac Left Ventricle (LV) function in Magnetic Resonance Images (MRI) has recently sparked an impressive research effort, which has resulted a number of techniques delivering promising performances. However, despite such an effort, the problem is still acknowledged to be challenging, with substantial room for improvements in regard to accuracy. Furthermore, most of the existing techniques are labour intensive, requiring delineations of the endo- and/or epi-cardial boundaries in all frames of a cardiac sequence. On the one hand, global assessments of LV function focus on estimation of the Ejection Fraction (EF), which quantifies how much blood the heart is pumping within each beat. On the other hand, regional assessments focus on comprehensive analysis of the wall motions within each of the standardized segments of the myocardium, the muscle which contracts and sends the blood out of the LV. In clinical practice, the EF is often estimated via manual segmentations of several images in a cardiac sequence. This is prohibitively time consuming, or via automatic segmentations, which is a challenging and computationally expensive task that may result in high estimation errors. Additionally, the diagnosis of the segmental dysfunction is based on visual LV assessments, which are subject to high inter-observer variability. In this thesis, we propose accurate methods to estimate both global and regional LV function with minimal user inputs in real-time from statistics estimated in MRI. From a simple user input, we build image statistics for all the images in a subject dataset. We demonstrate that these statistics are correlated with regional as well as global LV function. Different machine learning techniques have been employed to find these correlations. The regional dysfunction is investigated in terms of a binary/multi-classification problem. A comprehensive evaluation over 20 subjects demonstrated that the estimated EFs correlated very well with those obtained from independent manual segmentations. Furthermore, comparisons with estimating EF with recent segmentation algorithms show that the proposed method yielded a very competitive performance. For regional binary classification, we report a comprehensive experimental evaluation of the proposed algorithm over 928 cardiac segments obtained from 58 subjects. Compared against ground-truth evaluations by experienced radiologists, the proposed algorithm performed competitively, with an overall classification accuracy of 86.09% and a kappa measure of 0.73. We also report a comprehensive experimental evaluation of the proposed multi-classification algorithm over the same dataset. Compared against ground-truth labels assessed by experienced radiologists, the proposed algorithm yielded an overall 4-class accuracy of 74.14%

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    A non-rigid registration approach for quantifying myocardial contraction in tagged MRI using generalized information measures.

    Get PDF
    International audienceWe address the problem of quantitatively assessing myocardial function from tagged MRI sequences. We develop a two-step method comprising (i) a motion estimation step using a novel variational non-rigid registration technique based on generalized information measures, and (ii) a measurement step, yielding local and segmental deformation parameters over the whole myocardium. Experiments on healthy and pathological data demonstrate that this method delivers, within a reasonable computation time and in a fully unsupervised way, reliable measurements for normal subjects and quantitative pathology-specific information. Beyond cardiac MRI, this work redefines the foundations of variational non-rigid registration for information-theoretic similarity criteria with potential interest in multimodal medical imaging

    An improved classification approach for echocardiograms embedding temporal information

    Get PDF
    Cardiovascular disease is an umbrella term for all diseases of the heart. At present, computer-aided echocardiogram diagnosis is becoming increasingly beneficial. For echocardiography, different cardiac views can be acquired depending on the location and angulations of the ultrasound transducer. Hence, the automatic echocardiogram view classification is the first step for echocardiogram diagnosis, especially for computer-aided system and even for automatic diagnosis in the future. In addition, heart views classification makes it possible to label images especially for large-scale echo videos, provide a facility for database management and collection. This thesis presents a framework for automatic cardiac viewpoints classification of echocardiogram video data. In this research, we aim to overcome the challenges facing this investigation while analyzing, recognizing and classifying echocardiogram videos from 3D (2D spatial and 1D temporal) space. Specifically, we extend 2D KAZE approach into 3D space for feature detection and propose a histogram of acceleration as feature descriptor. Subsequently, feature encoding follows before the application of SVM to classify echo videos. In addition, comparison with the state of the art methodologies also takes place, including 2D SIFT, 3D SIFT, and optical flow technique to extract temporal information sustained in the video images. As a result, the performance of 2D KAZE, 2D KAZE with Optical Flow, 3D KAZE, Optical Flow, 2D SIFT and 3D SIFT delivers accuracy rate of 89.4%, 84.3%, 87.9%, 79.4%, 83.8% and 73.8% respectively for the eight view classes of echo videos

    Modified mass-spring system for physically based deformation modeling

    Get PDF
    Mass-spring systems are considered the simplest and most intuitive of all deformable models. They are computationally efficient, and can handle large deformations with ease. But they suffer several intrinsic limitations. In this book a modified mass-spring system for physically based deformation modeling that addresses the limitations and solves them elegantly is presented. Several implementations in modeling breast mechanics, heart mechanics and for elastic images registration are presented

    SUBIC: A Supervised Bi-Clustering Approach for Precision Medicine

    Full text link
    Traditional medicine typically applies one-size-fits-all treatment for the entire patient population whereas precision medicine develops tailored treatment schemes for different patient subgroups. The fact that some factors may be more significant for a specific patient subgroup motivates clinicians and medical researchers to develop new approaches to subgroup detection and analysis, which is an effective strategy to personalize treatment. In this study, we propose a novel patient subgroup detection method, called Supervised Biclustring (SUBIC) using convex optimization and apply our approach to detect patient subgroups and prioritize risk factors for hypertension (HTN) in a vulnerable demographic subgroup (African-American). Our approach not only finds patient subgroups with guidance of a clinically relevant target variable but also identifies and prioritizes risk factors by pursuing sparsity of the input variables and encouraging similarity among the input variables and between the input and target variable

    Artificial Intelligence with Light Supervision: Application to Neuroimaging

    Get PDF
    Recent developments in artificial intelligence research have resulted in tremendous success in computer vision, natural language processing and medical imaging tasks, often reaching human or superhuman performance. In this thesis, I further developed artificial intelligence methods based on convolutional neural networks with a special focus on the automated analysis of brain magnetic resonance imaging scans (MRI). I showed that efficient artificial intelligence systems can be created using only minimal supervision, by reducing the quantity and quality of annotations used for training. I applied those methods to the automated assessment of the burden of enlarged perivascular spaces, brain structural changes that may be related to dementia, stroke, mult

    Machine learning approaches to model cardiac shape in large-scale imaging studies

    Get PDF
    Recent improvements in non-invasive imaging, together with the introduction of fully-automated segmentation algorithms and big data analytics, has paved the way for large-scale population-based imaging studies. These studies promise to increase our understanding of a large number of medical conditions, including cardiovascular diseases. However, analysis of cardiac shape in such studies is often limited to simple morphometric indices, ignoring large part of the information available in medical images. Discovery of new biomarkers by machine learning has recently gained traction, but often lacks interpretability. The research presented in this thesis aimed at developing novel explainable machine learning and computational methods capable of better summarizing shape variability, to better inform association and predictive clinical models in large-scale imaging studies. A powerful and flexible framework to model the relationship between three-dimensional (3D) cardiac atlases, encoding multiple phenotypic traits, and genetic variables is first presented. The proposed approach enables the detection of regional phenotype-genotype associations that would be otherwise neglected by conventional association analysis. Three learning-based systems based on deep generative models are then proposed. In the first model, I propose a classifier of cardiac shapes which exploits task-specific generative shape features, and it is designed to enable the visualisation of the anatomical effect these features encode in 3D, making the classification task transparent. The second approach models a database of anatomical shapes via a hierarchy of conditional latent variables and it is capable of detecting, quantifying and visualising onto a template shape the most discriminative anatomical features that characterize distinct clinical conditions. Finally, a preliminary analysis of a deep learning system capable of reconstructing 3D high-resolution cardiac segmentations from a sparse set of 2D views segmentations is reported. This thesis demonstrates that machine learning approaches can facilitate high-throughput analysis of normal and pathological anatomy and of its determinants without losing clinical interpretability.Open Acces

    Modified mass-spring system for physically based deformation modeling

    Get PDF
    Mass-spring systems are considered the simplest and most intuitive of all deformable models. They are computationally efficient, and can handle large deformations with ease. But they suffer several intrinsic limitations. In this book a modified mass-spring system for physically based deformation modeling that addresses the limitations and solves them elegantly is presented. Several implementations in modeling breast mechanics, heart mechanics and for elastic images registration are presented
    • …
    corecore