2,417 research outputs found

    The development of perceptual priors

    Get PDF
    Bayesian inference has come to be regarded as the best, statistically optimal, way to deal with the sensory uncertainty inherent in our natural environment. One way to cope with such uncertainty is to incorporate our pre-existing knowledge about the world. However, we know very little about the circumstances in which human observers integrate sensory information with prior knowledge in a way that is close to optimal. We understand even less about how the developing brain adapts to the environmental statistics, learns to use them efficiently, and what factors may underlie the development of this critical perceptual skill. We addressed these questions though a series of psychophysical experiments, in which adults and 6- to 11-year-old children estimated the location of unseen targets based on a noisy sensory cue and a prior distribution that can be learned over the course of the experiment. In Chapter 2, we showed that adult observers weighted sensory and prior information by their reliabilities but were far from optimal and struggled to generalise to untrained reliabilities in complex situations. The findings of Chapter 3 showed that 6- to 8-year-olds also weighted priors in proportion to their reliability, but they were slow to tune their behaviour to the statistics over time and remained furthest from optimal. Six- to -eight-year-olds’ performance reached adult-like levels when the priors were explicitly shown. Conversely, when the decision rule was made more complex, 6- to 8-year-olds’ abilities to distinguish between the priors broke down and adults’ performance became more child-like. These findings prompted us to investigate whether individual differences, specifically in working memory, may predict performance in adults. The distance from optimal was not predicted by working memory capacity, beyond general cognitive abilities. Together, these studies offer fresh insights into the capacity and limitations both adults and 6-11-year-old children have in learning and efficiently using novel environmental statistics

    Learning and Designing Stochastic Processes from Logical Constraints

    Get PDF
    Stochastic processes offer a flexible mathematical formalism to model and reason about systems. Most analysis tools, however, start from the premises that models are fully specified, so that any parameters controlling the system's dynamics must be known exactly. As this is seldom the case, many methods have been devised over the last decade to infer (learn) such parameters from observations of the state of the system. In this paper, we depart from this approach by assuming that our observations are {\it qualitative} properties encoded as satisfaction of linear temporal logic formulae, as opposed to quantitative observations of the state of the system. An important feature of this approach is that it unifies naturally the system identification and the system design problems, where the properties, instead of observations, represent requirements to be satisfied. We develop a principled statistical estimation procedure based on maximising the likelihood of the system's parameters, using recent ideas from statistical machine learning. We demonstrate the efficacy and broad applicability of our method on a range of simple but non-trivial examples, including rumour spreading in social networks and hybrid models of gene regulation

    Bio-Inspired Computer Vision: Towards a Synergistic Approach of Artificial and Biological Vision

    Get PDF
    To appear in CVIUStudies in biological vision have always been a great source of inspiration for design of computer vision algorithms. In the past, several successful methods were designed with varying degrees of correspondence with biological vision studies, ranging from purely functional inspiration to methods that utilise models that were primarily developed for explaining biological observations. Even though it seems well recognised that computational models of biological vision can help in design of computer vision algorithms, it is a non-trivial exercise for a computer vision researcher to mine relevant information from biological vision literature as very few studies in biology are organised at a task level. In this paper we aim to bridge this gap by providing a computer vision task centric presentation of models primarily originating in biological vision studies. Not only do we revisit some of the main features of biological vision and discuss the foundations of existing computational studies modelling biological vision, but also we consider three classical computer vision tasks from a biological perspective: image sensing, segmentation and optical flow. Using this task-centric approach, we discuss well-known biological functional principles and compare them with approaches taken by computer vision. Based on this comparative analysis of computer and biological vision, we present some recent models in biological vision and highlight a few models that we think are promising for future investigations in computer vision. To this extent, this paper provides new insights and a starting point for investigators interested in the design of biology-based computer vision algorithms and pave a way for much needed interaction between the two communities leading to the development of synergistic models of artificial and biological vision

    An optimal approach to the design of experiments for the automatic characterisation of biosystems

    Get PDF
    The Design-Build-Test-Learn cycle is the main approach of synthetic biology to re-design and create new biological parts and systems, targeting the solution for complex and challenging paramount problems. The applications of the novel designs range from biosensing and bioremediation of water pollutants (e.g. heavy metals) to drug discovery and delivery (e.g. cancer treatment) or biofuel production (e.g. butanol and ethanol), amongst others. Standardisation, predictability and automation are crucial elements for synthetic biology to efficiently attain these objectives. Mathematical modelling is a powerful tool that allows us to understand, predict, and control these systems, as shown in many other disciplines such as particle physics, chemical engineering, epidemiology and economics. Yet, the inherent difficulties of using mathematical models substantially slowed their adoption by the synthetic biology community. Researchers might develop different competing model alternatives in absence of in-depth knowledge of a system, consequently being left with the burden of with having to find the best one. Models also come with unknown and difficult to measure parameters that need to be inferred from experimental data. Moreover, the varying informative content of different experiments hampers the solution of these model selection and parameter identification problems, adding to the scarcity and noisiness of laborious-to-obtain data. The difficulty to solve these non-linear optimisation problems limited the widespread use of advantageous mathematical models in synthetic biology, broadening the gap between computational and experimental scientists. In this work, I present the solutions to the problems of parameter identification, model selection and experimental design, validating them with in vivo data. First, I use Bayesian inference to estimate model parameters, relaxing the traditional noise assumptions associated with this problem. I also apply information-theoretic approaches to evaluate the amount of information extracted from experiments (entropy gain). Next, I define methodologies to quantify the informative content of tentative experiments planned for model selection (distance between predictions of competing models) and parameter inference (model prediction uncertainty). Then, I use the two methods to define efficient platforms for optimal experimental design and use a synthetic gene circuit (the genetic toggle switch) to substantiate the results, computationally and experimentally. I also expand strategies to optimally design experiments for parameter identification to update parameter information and input designs during the execution of these (on-line optimal experimental design) using microfluidics. Finally, I developed an open-source and easy-to-use Julia package, BOMBs.jl, automating all the above functionalities to facilitate their dissemination and use amongst the synthetic biology community

    Bipartite network models to design combination therapies in acute myeloid leukaemia

    Get PDF
    Combination therapy is preferred over single-targeted monotherapies for cancer treatment due to its efficiency and safety. However, identifying effective drug combinations costs time and resources. We propose a method for identifying potential drug combinations by bipartite network modelling of patient-related drug response data, specifically the Beat AML dataset. The median of cell viability is used as a drug potency measurement to reconstruct a weighted bipartite network, model drug-biological sample interactions, and find the clusters of nodes inside two projected networks. Then, the clustering results are leveraged to discover effective multi-targeted drug combinations, which are also supported by more evidence using GDSC and ALMANAC databases. The potency and synergy levels of selective drug combinations are corroborated against monotherapy in three cell lines for acute myeloid leukaemia in vitro. In this study, we introduce a nominal data mining approach to improving acute myeloid leukaemia treatment through combinatorial therapy.Peer reviewe

    Split-BOLFI for for misspecification-robust likelihood free inference in high dimensions

    Full text link
    Likelihood-free inference for simulator-based statistical models has recently grown rapidly from its infancy to a useful tool for practitioners. However, models with more than a very small number of parameters as the target of inference have remained an enigma, in particular for the approximate Bayesian computation (ABC) community. To advance the possibilities for performing likelihood-free inference in high-dimensional parameter spaces, here we introduce an extension of the popular Bayesian optimisation based approach to approximate discrepancy functions in a probabilistic manner which lends itself to an efficient exploration of the parameter space. Our method achieves computational scalability by using separate acquisition procedures for the discrepancies defined for different parameters. These efficient high-dimensional simulation acquisitions are combined with exponentiated loss-likelihoods to provide a misspecification-robust characterisation of the marginal posterior distribution for all model parameters. The method successfully performs computationally efficient inference in a 100-dimensional space on canonical examples and compares favourably to existing Copula-ABC methods. We further illustrate the potential of this approach by fitting a bacterial transmission dynamics model to daycare centre data, which provides biologically coherent results on the strain competition in a 30-dimensional parameter space

    Phenomenology and scaling of optimal flapping wing kinematics

    Full text link
    Biological flapping wing fliers operate efficiently and robustly in a wide range of flight conditions and are a great source of inspiration to engineers. The unsteady aerodynamics of flapping-wings are dominated by large-scale vortical structures that augment the aerodynamic performance but are sensitive to minor changes in the wing actuation. We experimentally optimise the pitch angle kinematics of a flapping wing system in hover to maximise the stroke average lift and hovering efficiency using a evolutionary algorithm and in-situ force and torque measurements at the wing root. Additional flow field measurements are conducted to link the vortical flow structures to the aerodynamic performance for the Pareto-optimal kinematics. The optimised pitch angle profiles yielding maximum stroke-average lift coefficients have trapezoidal shapes and high average angles of attack. These kinematics create strong leading-edge vortices early in the cycle which enhance the force production on the wing. The most efficient pitch angle kinematics resemble sinusoidal evolutions and have lower average angles of attack. The leading-edge vortex grows slower and stays close-bound to the wing throughout the majority of the stroke-cycle. This requires less aerodynamic power and increases the hovering efficiency by 93% but sacrifices 43% of the maximum lift. In all cases, a leading-edge vortex is fed by vorticity through the leading edge shear-layer which makes the shear-layer velocity a good indicator for the growth of the vortex and its impact on the aerodynamic forces. We estimate the shear-layer velocity at the leading edge solely from the input kinematics and use it to scale the average and the time-resolved evolution of the circulation and the aerodynamic forces

    Statistical computation with kernels

    Get PDF
    Modern statistical inference has seen a tremendous increase in the size and complexity of models and datasets. As such, it has become reliant on advanced com- putational tools for implementation. A first canonical problem in this area is the numerical approximation of integrals of complex and expensive functions. Numerical integration is required for a variety of tasks, including prediction, model comparison and model choice. A second canonical problem is that of statistical inference for models with intractable likelihoods. These include models with intractable normal- isation constants, or models which are so complex that their likelihood cannot be evaluated, but from which data can be generated. Examples include large graphical models, as well as many models in imaging or spatial statistics. This thesis proposes to tackle these two problems using tools from the kernel methods and Bayesian non-parametrics literature. First, we analyse a well-known algorithm for numerical integration called Bayesian quadrature, and provide consis- tency and contraction rates. The algorithm is then assessed on a variety of statistical inference problems, and extended in several directions in order to reduce its compu- tational requirements. We then demonstrate how the combination of reproducing kernels with Stein’s method can lead to computational tools which can be used with unnormalised densities, including numerical integration and approximation of probability measures. We conclude by studying two minimum distance estimators derived from kernel-based statistical divergences which can be used for unnormalised and generative models. In each instance, the tractability provided by reproducing kernels and their properties allows us to provide easily-implementable algorithms whose theoretical foundations can be studied in depth

    AN INVESTIGATION OF ELECTROMYOGRAPHIC (EMG) CONTROL OF DEXTROUS HAND PROSTHESES FOR TRANSRADIAL AMPUTEES

    Get PDF
    In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Plymouth University's products or services.There are many amputees around the world who have lost a limb through conflict, disease or an accident. Upper-limb prostheses controlled using surface Electromyography (sEMG) offer a solution to help the amputees; however, their functionality is limited by the small number of movements they can perform and their slow reaction times. Pattern recognition (PR)-based EMG control has been proposed to improve the functional performance of prostheses. It is a very promising approach, offering intuitive control, fast reaction times and the ability to control a large number of degrees of freedom (DOF). However, prostheses controlled with PR systems are not available for everyday use by amputees, because there are many major challenges and practical problems that need to be addressed before clinical implementation is possible. These include lack of individual finger control, an impractically large number of EMG electrodes, and the lack of deployment protocols for EMG electrodes site selection and movement optimisation. Moreover, the inability of PR systems to handle multiple forces is a further practical problem that needs to be addressed. The main aim of this project is to investigate the research challenges mentioned above via non-invasive EMG signal acquisition, and to propose practical solutions to help amputees. In a series of experiments, the PR systems presented here were tested with EMG signals acquired from seven transradial amputees, which is unique to this project. Previous studies have been conducted using non-amputees. In this work, the challenges described are addressed and a new protocol is proposed that delivers a fast clinical deployment of multi-functional upper limb prostheses controlled by PR systems. Controlling finger movement is a step towards the restoration of lost human capabilities, and is psychologically important, as well as physically. A central thread running through this work is the assertion that no two amputees are the same, each suffering different injuries and retaining differing nerve and muscle structures. This work is very much about individualised healthcare, and aims to provide the best possible solution for each affected individual on a case-by-case basis. Therefore, the approach has been to optimise the solution (in terms of function and reliability) for each individual, as opposed to developing a generic solution, where performance is optimised against a test population. This work is unique, in that it contributes to improving the quality of life for each individual amputee by optimising function and reliability. The main four contributions of the thesis are as follows: 1- Individual finger control was achieved with high accuracy for a large number of finger movements, using six optimally placed sEMG channels. This was validated on EMG signals for ten non-amputee and six amputee subjects. Thumb movements were classified successfully with high accuracy for the first time. The outcome of this investigation will help to add more movements to the prosthesis, and reduce hardware and computational complexity. 2- A new subject-specific protocol for sEMG site selection and reliable movement subset optimisation, based on the amputee’s needs, has been proposed and validated on seven amputees. This protocol will help clinicians to perform an efficient and fast deployment of prostheses, by finding the optimal number and locations of EMG channels. It will also find a reliable subset of movements that can be achieved with high performance. 3- The relationship between the force of contraction and the statistics of EMG signals has been investigated, utilising an experimental design where visual feedback from a Myoelectric Control Interface (MCI) helped the participants to produce the correct level of force. Kurtosis values were found to decrease monotonically when the contraction level increased, thus indicating that kurtosis can be used to distinguish different forces of contractions. 4- The real practical problem of the degradation of classification performance as a result of the variation of force levels during daily use of the prosthesis has been investigated, and solved by proposing a training approach and the use of a robust feature extraction method, based on the spectrum. The recommendations of this investigation improve the practical robustness of prostheses controlled with PR systems and progress a step further towards clinical implementation and improving the quality of life of amputees. The project showed that PR systems achieved a reliable performance for a large number of amputees, taking into account real life issues such as individual finger control for high dexterity, the effect of force level variation, and optimisation of the movements and EMG channels for each individual amputee. The findings of this thesis showed that the PR systems need to be appropriately tuned before usage, such as training with multiple forces to help to reduce the effect of force variation, aiming to improve practical robustness, and also finding the optimal EMG channel for each amputee, to improve the PR system’s performance. The outcome of this research enables the implementation of PR systems in real prostheses that can be used by amputees.Ministry of Higher Education and Scientific Research and Baghdad University- Baghdad/Ira
    • …
    corecore