1,029 research outputs found

    Studies of Uncertainties in Smart Grid: Wind Power Generation and Wide-Area Communication

    Get PDF
    This research work investigates the uncertainties in Smart Grid, with special focus on the uncertain wind power generation in wind energy conversion systems (WECSs) and the uncertain wide-area communication in wide-area measurement systems (WAMSs). For the uncertain wind power generation in WECSs, a new wind speed modeling method and an improved WECS control method are proposed, respectively. The modeling method considers the spatial and temporal distributions of wind speed disturbances and deploys a box uncertain set in wind speed models, which is more realistic for practicing engineers. The control method takes maximum power point tracking, wind speed forecasting, and wind turbine dynamics into account, and achieves a balance between power output maximization and operating cost minimization to further improve the overall efficiency of wind power generation. Specifically, through the proposed modeling and control methods, the wind power control problem is developed as a min-max optimal problem and efficiently solved with semi-definite programming. For the uncertain communication delay and communication loss (i.e. data loss) in WAMSs, the corresponding solutions are presented. First, the real-world communication delay is measured and analyzed, and the bounded modeling method for the communication delay is proposed for widearea applications and further applied for system-area and substation-area protection applications, respectively. The proposed bounded modeling method is expected to be an important tool in the planning, design, and operation of time-critical wide-area applications. Second, the real synchronization signal loss and synchrophasor data loss events are measured and analyzed. For the synchronization signal loss, the potential reasons and solutions are explored. For the synchrophasor data loss, a set of estimation methods are presented, including substitution, interpolation, and forecasting. The estimation methods aim to improve the accuracy and availability of WAMSs, and mitigate the effect of communication failure and data loss on wide-area applications

    Adaptive model predictive control

    Get PDF
    The problem of model predictive control (MPC) under parametric uncertainties for a class of nonlinear systems is addressed. An adaptive identi er is used to estimate the pa- rameters and the state variables simultaneously. The algorithm proposed guarantees the convergence of parameters and the state variables to their true value. The task is posed as an adaptive model predictive control problem in which the controller is required to steer the system to the system setpoint that optimizes a user-speci ed objective function. The technique of adaptive model predictive control is developed for two broad classes of systems. The rst class of system considered is a class of uncertain nonlinear systems with input to state stability property. Using a generalization of the set-based adaptive estimation technique, the estimates of the parameters and state are updated to guarantee convergence to a neighborhood of their true value. The second involves a method of determining appropriate excitation conditions for nonlin- ear systems. Since the identi cation of the true cost surface is paramount to the success of the integration scheme, novel parameter estimation techniques with better convergence properties are developed. The estimation routine allows exact reconstruction of the systems unknown parameters in nite-time. The applicability of the identi er to improve upon the performance of existing adaptive controllers is demonstrated. Then, an adaptive nonlinear model predictive controller strategy is integrated to this estimation algorithm in which ro- bustness features are incorporated to account for the e ect of the model uncertainty. To study the practical applicability of the developed method, the estimation of state vari- ables and unknown parameters in a stirred tank process has been performed. The results of the experimental application demonstrate the ability of the proposed techniques to estimate the state variables and parameters of an uncertain practical system.Departamento de Ingeniería de Sistemas y AutomáticaMáster en Investigación en Ingeniería de Procesos y Sistemas Industriale

    Robust Controller for Delays and Packet Dropout Avoidance in Solar-Power Wireless Network

    Get PDF
    Solar Wireless Networked Control Systems (SWNCS) are a style of distributed control systems where sensors, actuators, and controllers are interconnected via a wireless communication network. This system setup has the benefit of low cost, flexibility, low weight, no wiring and simplicity of system diagnoses and maintenance. However, it also unavoidably calls some wireless network time delays and packet dropout into the design procedure. Solar lighting system offers a clean environment, therefore able to continue for a long period. SWNCS also offers multi Service infrastructure solution for both developed and undeveloped countries. The system provides wireless controller lighting, wireless communications network (WI-FI/WIMAX), CCTV surveillance, and wireless sensor for weather measurement which are all powered by solar energy

    Advances in state estimation, diagnosis and control of complex systems

    Get PDF
    This dissertation intends to provide theoretical and practical contributions on estimation, diagnosis and control of complex systems, especially in the mathematical form of descriptor systems. The research is motivated by real applications, such as water networks and power systems, which require a control system to provide a proper management able to take into account their specific features and operating limits in presence of uncertainties related to their operation and failures from component malfunctions. Such a control system is expected to provide an optimal operation to obtain efficient and reliable performance. State estimation is an essential tool, which can be used not only for fault diagnosis but also for the controller design. To achieve a satisfactory robust performance, set theory is chosen to build a general framework for descriptor systems subject to uncertainties. Under certain assumptions, these uncertainties are propagated and bounded by deterministic sets that can be explicitly characterized at each iteration step. Moreover, set-invariance characterizations for descriptor systems are also of interest to describe the steady performance, which can also be used for active mode detection. For the controller design for complex systems, new developments of economic model predictive control (EMPC) are studied taking into account the case of underlying periodic behaviors. The EMPC controller is designed to be recursively feasible even with sudden changes in the economic cost function and the closed-loop convergence is guaranteed. Besides, a robust technique is plugged into the EMPC controller design to maintain these closed-loop properties in presence of uncertainties. Engineering applications modeled as descriptor systems are presented to illustrate these control strategies. From the real applications, some additional difficulties are solved, such as using a two-layer control strategy to avoid binary variables in real-time optimizations and using nonlinear constraint relaxation to deal with nonlinear algebraic equations in the descriptor model. Furthermore, the fault-tolerant capability is also included in the controller design for descriptor systems by means of the designed virtual actuator and virtual sensor together with an observer-based delayed controller.Esta tesis propone contribuciones de carácter teórico y aplicado para la estimación del estado, el diagnóstico y el control óptimo de sistemas dinámicos complejos en particular, para los sistemas descriptores, incluyendo la capacidad de tolerancia a fallos. La motivación de la tesis proviene de aplicaciones reales, como redes de agua y sistemas de energía, cuya naturaleza crítica requiere necesariamente un sistema de control para una gestión capaz de tener en cuenta sus características específicas y límites operativos en presencia de incertidumbres relacionadas con su funcionamiento, así como fallos de funcionamiento de los componentes. El objetivo es conseguir controladores que mejoren tanto la eficiencia como la fiabilidad de dichos sistemas. La estimación del estado es una herramienta esencial que puede usarse no solo para el diagnóstico de fallos sino también para el diseño del control. Con este fin, se ha decidido utilizar metodologías intervalares, o basadas en conjuntos, para construir un marco general para los sistemas de descriptores sujetos a incertidumbres desconocidas pero acotadas. Estas incertidumbres se propagan y delimitan mediante conjuntos que se pueden caracterizar explícitamente en cada instante. Por otra parte, también se proponen caracterizaciones basadas en conjuntos invariantes para sistemas de descriptores que permiten describir comportamientos estacionarios y resultan útiles para la detección de modos activos. Se estudian también nuevos desarrollos del control predictivo económico basado en modelos (EMPC) para tener en cuenta posibles comportamientos periódicos en la variación de parámetros o en las perturbaciones que afectan a estos sistemas. Además, se demuestra que el control EMPC propuesto garantiza la factibilidad recursiva, incluso frente a cambios repentinos en la función de coste económico y se garantiza la convergencia en lazo cerrado. Por otra parte, se utilizan técnicas de control robusto pata garantizar que las estrategias de control predictivo económico mantengan las prestaciones en lazo cerrado, incluso en presencia de incertidumbre. Los desarrollos de la tesis se ilustran con casos de estudio realistas. Para algunas de aplicaciones reales, se resuelven dificultades adicionales, como el uso de una estrategia de control de dos niveles para evitar incluir variables binarias en la optimización y el uso de la relajación de restricciones no lineales para tratar las ecuaciones algebraicas no lineales en el modelo descriptor en las redes de agua. Finalmente, se incluye también una contribución al diseño de estrategias de control con tolerancia a fallos para sistemas descriptores

    State estimation, system identification and adaptive control for networked systems

    Get PDF
    A networked control system (NCS) is a feedback control system that has its control loop physically connected via real-time communication networks. To meet the demands of `teleautomation', modularity, integrated diagnostics, quick maintenance and decentralization of control, NCSs have received remarkable attention worldwide during the past decade. Yet despite their distinct advantages, NCSs are suffering from network-induced constraints such as time delays and packet dropouts, which may degrade system performance. Therefore, the network-induced constraints should be incorporated into the control design and related studies. For the problem of state estimation in a network environment, we present the strategy of simultaneous input and state estimation to compensate for the effects of unknown input missing. A sub-optimal algorithm is proposed, and the stability properties are proven by analyzing the solution of a Riccati-like equation. Despite its importance, system identification in a network environment has been studied poorly before. To identify the parameters of a system in a network environment, we modify the classical Kalman filter to obtain an algorithm that is capable of handling missing output data caused by the network medium. Convergence properties of the algorithm are established under the stochastic framework. We further develop an adaptive control scheme for networked systems. By employing the proposed output estimator and parameter estimator, the designed adaptive control can track the expected signal. Rigorous convergence analysis of the scheme is performed under the stochastic framework as well

    Predictive control approaches to fault tolerant control of wind turbines

    Get PDF
    This thesis focuses on active fault tolerant control (AFTC) of wind turbine systems. Faults in wind turbine systems can be in the form of sensor faults, actuator faults, or component faults. These faults can occur in different locations, such as the wind speed sensor, the generator system, drive train system or pitch system. In this thesis, some AFTC schemes are proposed for wind turbine faults in the above locations. Model predictive control (MPC) is used in these schemes to design the wind turbine controller such that system constraints and dual control goals of the wind turbine are considered. In order to deal with the nonlinearity in the turbine model, MPC is combined with Takagi-Sugeno (T-S) fuzzy modelling. Different fault diagnosis methods are also proposed in different AFTC schemes to isolate or estimate wind turbine faults.The main contributions of the thesis are summarized as follows:A new effective wind speed (EWS) estimation method via least-squares support vector machines (LSSVM) is proposed. Measurements from the wind turbine rotor speed sensor and the generator speed sensor are utilized by LSSVM to estimate the EWS. Following the EWS estimation, a wind speed sensor fault isolation scheme via LSSVM is proposed.A robust predictive controller is designed to consider the EWS estimation error. This predictive controller serves as the baseline controller for the wind turbine system operating in the region below rated wind speed.T-S fuzzy MPC combining MPC and T-S fuzzy modelling is proposed to design the wind turbine controller. MPC can deal with wind turbine system constraints externally. On the other hand, T-S fuzzy modelling can approximate the nonlinear wind turbine system with a linear time varying (LTV) model such that controller design can be based on this LTV model. Therefore, the advantages of MPC and T-S fuzzy modelling are both preserved in the proposed T-S fuzzy MPC.A T-S fuzzy observer, based on online eigenvalue assignment, is proposed as the sensor fault isolation scheme for the wind turbine system. In this approach, the fuzzy observer is proposed to deal with the nonlinearity in the wind turbine system and estimate system states. Furthermore, the residual signal generated from this fuzzy observer is used to isolate the faulty sensor.A sensor fault diagnosis strategy utilizing both analytical and hardware redundancies is proposed for wind turbine systems. This approach is proposed due to the fact that in the real application scenario, both analytical and hardware redundancies of wind turbines are available for designing AFTC systems.An actuator fault estimation method based on moving horizon estimation (MHE) is proposed for wind turbine systems. The estimated fault by MHE is then compensated by a T-S fuzzy predictive controller. The fault estimation unit and the T-S fuzzy predictive controller are combined to form an AFTC scheme for wind turbine actuator faults

    Model-based estimation and control methods for batch cooling crystallizers

    Get PDF
    This thesis addresses the problem of online multi-resource management in embedded real-time systems. It focuses on three research questions. The first question concentrates on how to design an efficient hierarchical scheduling framework for supporting independent development and analysis of component based systems, to provide temporal isolation between components. The second question investigates how to change the mapping of resources to tasks and components during run-time efficiently and predictably, and how to analyze the latency of such a system mode change in systems comprised of several scalable components. The third question deals with the scheduling and analysis of a set of parallel-tasks with real-time constraints which require simultaneous access to several different resources. For providing temporal isolation we chose a reservation-based approach. We first focused on processor reservations, where timed events play an important role. Common examples are task deadlines, periodic release of tasks, budget replenishment and budget depletion. Efficient timer management is therefore essential. We investigated the overheads in traditional timer management techniques and presented a mechanism called Relative Timed Event Queues (RELTEQ), which provides an expressive set of primitives at a low processor and memory overhead. We then leveraged RELTEQ to create an efficient, modular and extensible design for enhancing a real-time operating system with periodic tasks, polling, idling periodic and deferrable servers, and a two-level fixed priority Hierarchical Scheduling Framework (HSF). The HSF design provides temporal isolation and supports independent development of components by separating the global and local scheduling, and allowing each server to define a dedicated scheduler. Furthermore, the design addresses the system overheads inherent to an HSF and prevents undesirable interference between components. It limits the interference of inactive servers on the system level by means of wakeup events and a combination of inactive server queues with a stopwatch queue. Our implementation is modular and requires only a few modifications of the underlying operating system. We then investigated scalable components operating in a memory-constrained system. We first showed how to reduce the memory requirements in a streaming multimedia application, based on a particular priority assignment of the different components along the processing chain. Then we investigated adapting the resource provisions to tasks during runtime, referred to as mode changes. We presented a novel mode change protocol called Swift Mode Changes, which relies on Fixed Priority with Deferred preemption Scheduling to reduce the mode change latency bound compared to existing protocols based on Fixed Priority Preemptive Scheduling. We then presented a new partitioned parallel-task scheduling algorithm called Parallel-SRP (PSRP), which generalizes MSRP for multiprocessors, and the corresponding schedulability analysis for the problem of multi-resource scheduling of parallel tasks with real-time constraints. We showed that the algorithm is deadlock-free, derived a maximum bound on blocking, and used this bound as a basis for a schedulability test. We then demonstrated how PSRP can exploit the inherent parallelism of a platform comprised of multiple heterogeneous resources. Finally, we presented Grasp, which is a visualization toolset aiming to provide insight into the behavior of complex real-time systems. Its flexible plugin infrastructure allows for easy extension with custom visualization and analysis techniques for automatic trace verification. Its capabilities include the visualization of hierarchical multiprocessor systems, including partitioned and global multiprocessor scheduling with migrating tasks and jobs, communication between jobs via shared memory and message passing, and hierarchical scheduling in combination with multiprocessor scheduling. For tracing distributed systems with asynchronous local clocks Grasp also supports the synchronization of traces from different processors during the visualization and analysis
    • …
    corecore