25 research outputs found

    Active Flat Optics Wavefront Manipulation for Imaging, Ranging, and Sensing

    Get PDF
    The emergence and maturity of integrated photonic platforms over the past decade allowed for reliable integration of a large number of photonic components on a single substrate. This ability to process and control coherent light on a chip is a potential pathway for the realization of novel low-cost systems capable of non-conventional functionalities for optical wavefront engineering. In this thesis, integrated active flat optics architectures for generation, manipulation, and reception of optical wavefronts are investigated. In particular, the application of such systems for imaging, ranging, and sensing are studied and multiple photonic systems including a large scale transmitter, a high-sensitivity receiver, and a high-resolution transceiver are demonstrated. For generation of optical wavefronts, solutions for engineering a radiative optical waveform via emission by an array of nano-photonic antennas are studied and a chip-scale photonic transmitter is implemented. The transmitter forms an optical phased array with a novel architecture in a CMOS compatible silicon photonics process which not only dispenses with the limitations of previously demonstrated systems but also yields a narrower beamwidth leading to a higher resolution. Moreover, an integrated adaptive flat optical receiver architecture that collects samples of the incident light and processes it on-chip with high detection sensitivity is implemented. To detect the optical samples with a high signal to noise ratio, an optoelectronic mixer is proposed and designed that down-converts the optical signals received by each antenna to a radio frequency signal in the electronic domain, provides conversion gain, and rejects interferers. This system allows arbitrary wavefront manipulation of the received signal by adapting itself to new conditions — a capability that does not exist in conventional cameras. Using this system, we realized the first high-sensitivity optical phased array receivers with one-dimensional and two-dimensional apertures and the functionality of the chips as ultra-thin lens-less cameras were demonstrated. To achieve a high-resolution integrated photonic 3D imager with low system complexity, a double spectral sampling method is developed through a special wavefront sampling arrangement on the transmitter and receiver apertures. This transceiver architecture includes a multi-beam transmitter and a high-sensitivity receiver that can distinguish the illuminated points separately and process them simultaneously using a digital signal processor. Moreover, novel ultra-low power architectures for generation and reception of short RF/microwave pulses are explored. Such systems have a broad range of applications including imaging and ranging. In this study, the capability of generating and receiving orthogonal Hermite pulses of various orders using a capacitor-only time-varying network is demonstrated.</p

    Dynamic Focusing of Large Arrays for Wireless Power Transfer and Beyond

    Get PDF
    We present architectures, circuits, and algorithms for dynamic 3-D lensing and focusing of electromagnetic power in radiative near- and far-field regions by arrays that can be arbitrary and nonuniform. They can benefit applications such as wireless power transfer at a distance (WPT-AD), volumetric sensing and imaging, high-throughput communications, and optical phased arrays. Theoretical limits on system performance are calculated. An adaptive algorithm focuses the power at the receiver(s) without prior knowledge of its location(s). It uses orthogonal bases to change the phases of multiple elements simultaneously to enhance the dynamic range. One class of such 2-D orthogonal and pseudo-orthogonal masks is constructed using the Hadamard and pseudo-Hadamard matrices. Generation and recovery units (GU and RU) work collaboratively to focus energy quickly and reliably with no need for factory calibration. Orthogonality enables batch processing in high-latency and low-rate communication settings. Secondary vector-based calculations allow instantaneous refocusing at different locations using element-wise calculations. An emulator enables further evaluation of the system. We demonstrate modular WPT-AD GUs of up to 400 elements utilizing arrays of 65-nm CMOS ICs to focus power on RUs that convert the RF power to dc. Each RFIC synthesizes 16 independently phase-controlled RF outputs around 10 GHz from a common single low-frequency reference. Detailed measurements demonstrate the feasibility and effectiveness of RF lensing techniques presented in this article. More than 2 W of dc power can be recovered through a wireless transfer at distances greater than 1 m. The system can dynamically project power at various angles and at distances greater than 10 m. These developments are another step toward unified wireless power, sensing, and communication solutions in the future

    Increasing the Field-of-View Radiation Efficiency of Optical Phased Antenna Arrays

    Full text link
    Silicon photonics in conjunction with complementary metal-oxide-semiconductor (CMOS) fabrication has greatly enhanced the development of integrated optical phased arrays. This facilitates a dynamic control of light in a compact form factor that enables the synthesis of arbitrary complex wavefronts in the infrared spectrum. We numerically demonstrate a large-scale two dimensional silicon-based optical phased array (OPA) composed of nanoantennas with circular gratings that are balanced in power and aligned in phase, required for producing elegant radiation patterns in the far field. For a wavelength of 1.55μm\mu m, we optmize two antennas for the OPA exhibting an upward radiation efficiency as high as 90%, with almost 6.8% of optical power concentrated in the field of view. Additionally, we believe that the proposed OPAs can be easily fabricated and would have the ability of generating complex holographic images, rendering them an attractive candidate for a wide range of applications like LiDAR sensors, optical trapping, optogenetic stimulation and augmented-reality displays

    Breaking FOV-Aperture Trade-Off with Multi-Mode Nano-Photonic Antennas

    Get PDF
    Nano-photonic antennas are one of the key components in integrated photonic transmitter and receiver systems. Conventionally, grating couplers, designed to couple into an optical fiber, suffering from limitations such as large footprint and small field-of-view (FOV) have been used as on-chip antennas. The challenge of the antenna design is more pronounced for the receiver systems, where both the collected power by the antenna and its FOV often need to be maximized. While some novel solutions have been demonstrated recently, identifying fundamental limits and trade-offs in nano-photonic antenna design is essential for devising compact antenna structures with improved performance. In this paper, the fundamental electromagnetic limits, as well as fabrication imposed constraints on improving antenna effective aperture and FOV are studied, and approximated performance upper limits are derived and quantified. By deviating from the conventional assumptions leading to these limits, high-performance multi-mode antenna structures with performance characteristics beyond the conventional perceived limits are demonstrated. Finally, the application of a pillar multi-mode antenna in a dense array is discussed, an antenna array with more than 95% collection efficiency and 170∘ FOV is demonstrated, and a coherent receiving system utilizing such an aperture is presented

    Large-Scale Crosstalk-Corrected Thermo-Optic Phase Shifter Arrays in Silicon Photonics

    Full text link
    We introduce a thermo-optic phase shifter (TOPS) array architecture with independent phase control of each phase shifter for large-scale and high-density photonic integrated circuits with two different control schemes: pulse amplitude modulation (PAM) and pulse width modulation (PWM). We realize a compact spiral TOPS and a 288-element high-density row-column TOPS array with this architecture and drive TOPS with waveforms of both control schemes and of different array sizes. We present a thermal excitation model and a finite difference method-based simulation to simulate large-scale TOPS arrays and compare both schemes experimentally and theoretically. We also analyze the effects of thermal crosstalk in the realized TOPS array and implement a thermal crosstalk correction algorithm with the developed model. The high-density TOPS array architecture and the thermal crosstalk correction algorithm pave the way for high-density TOPS arrays with independent phase control in large-scale photonic integrated circuits interfaced with electronics limited in voltage swing and bandwidth.Comment: 12 pages and 19 figures accepted to IEEE JSTQE for publicatio

    Breaking FOV-Aperture Trade-Off with Multi-Mode Nano-Photonic Antennas

    Get PDF
    Nano-photonic antennas are one of the key components in integrated photonic transmitter and receiver systems. Conventionally, grating couplers, designed to couple into an optical fiber, suffering from limitations such as large footprint and small field-of-view (FOV) have been used as on-chip antennas. The challenge of the antenna design is more pronounced for the receiver systems, where both the collected power by the antenna and its FOV often need to be maximized. While some novel solutions have been demonstrated recently, identifying fundamental limits and trade-offs in nano-photonic antenna design is essential for devising compact antenna structures with improved performance. In this paper, the fundamental electromagnetic limits, as well as fabrication imposed constraints on improving antenna effective aperture and FOV are studied, and approximated performance upper limits are derived and quantified. By deviating from the conventional assumptions leading to these limits, high-performance multi-mode antenna structures with performance characteristics beyond the conventional perceived limits are demonstrated. Finally, the application of a pillar multi-mode antenna in a dense array is discussed, an antenna array with more than 95% collection efficiency and 170∘ FOV is demonstrated, and a coherent receiving system utilizing such an aperture is presented

    Large-Scale Photonics Integration: Data Communications to Optical Beamforming

    Get PDF
    Integrated photonics is an emerging technology that has begun to transform our way of life with the same amount of impact that integrated CMOS electronics has. Currently, photonics integration is orders of magnitude less complicated than its electronics counterparts. Nonetheless, it serves as one of the main driving forces to meet the exponentially increasing demand for high-speed and low-cost data transfer in the Information Age. It also promises to provide solutions for next-generation high-sensitivity image sensors and precision metrology and spectroscopy instruments. In this thesis, integrated photonics architectures for solid-state photonic beamforming and processing are investigated for high-resolution and high sensitivity lens-free transceiver applications. Furthermore, high-efficiency integrated electro-optical modulators aiming to meet the demand of high-density photonic integration with improved modulation efficiency, small footprint, and lower insertion loss are investigated. Two integrated photonic solid-state beamforming architectures incorporating two-dimensional apertures are explored. First, a novel transceiver architecture for remote sensing, coherent imaging, and ranging applications is demonstrated. It reduces system implementation complexity and offers a methodology for very-large-scale coherent transceiver beamforming applications. Next, a transmitter beamforming architecture inspired by the diffraction pattern of the slit annular ring is analyzed and demonstrated. This transceiver architecture can be used for coherent beamforming applications such as imaging and point-to-point optical communication. Finally, a coherent imager architecture for high-sensitivity three-dimensional imaging and remote-sensing applications is present. This novel architecture can suppress undesired phase fluctuations of the optical carrier signal in the illumination and reference paths, providing higher resolution and higher acquisition speed than previous implementations. Moreover, several compact, high-speed CMOS compatible modulators that enable high-density photonic integration are explored. Ultra-compact and low insertion loss silicon-organic-hybrid modulators are designed and implemented for high-speed beamforming and high-efficiency complex signal modulation applications. Finally, a novel integrated nested-ring assisted modulator topology is analyzed and implemented for high-density and high modulation efficiency applications.</p

    Scalable and ultralow power silicon photonic two-dimensional phased array

    Full text link
    Photonic integrated circuit based optical phased arrays (PIC-OPA) are emerging as promising programmable processors and spatial light modulators, combining the best of planar and free-space optics. Their implementation in silicon photonic platforms has been especially fruitful. Despite much progress in this field, demonstrating steerable two-dimensional (2D) OPAs scalable to a large number of array elements and operating with a single wavelength has proven a challenge. In addition, the phase shifters used in the array for programming the far field beam are either power hungry or have a large footprint, preventing implementation of large scale 2D arrays. Here, we demonstrate a two-dimensional silicon photonic phased array with high-speed (~330 KHz) and ultralow power microresonator phase-shifters with a compact radius (~3 {\mu}m) and 2{\pi} phase shift ability. Each phase-shifter consumes an average ~250 {\mu}W static power for resonance alignment and ~50 {\mu}W power for far field beamforming. Such PIC-OPA devices can enable a new generation of compact and scalable low power processors and sensors

    On the performance of optical phased array technology for beam steering : effect of pixel limitations

    Get PDF
    Optical phased arrays are of strong interest for beam steering in telecom and LIDAR applications. A phased array ideally requires that the field produced by each element in the array (a pixel) is fully controllable in phase and amplitude (ideally constant). This is needed to realize a phase gradient along a direction in the array, and thus beam steering in that direction. In practice, grating lobes appear if the pixel size is not sub-wavelength, which is an issue for many optical technologies. Furthermore, the phase performance of an optical pixel may not span the required 2π phase range or may not produce a constant amplitude over its phase range. These limitations result in imperfections in the phase gradient, which in turn introduce undesirable secondary lobes. We discuss the effects of non-ideal pixels on beam formation, in a general and technology-agnostic manner. By examining the strength of secondary lobes with respect to the main lobe, we quantify beam steering quality and make recommendations on the pixel performance required for beam steering within prescribed specifications. By applying appropriate compensation strategies, we show that it is possible to realize high-quality beam steering even when the pixel performance is non-ideal, with intensity of the secondary lobes two orders of magnitude smaller than the main lobe. © 2020 OSA - The Optical Society. All rights reserved
    corecore