43 research outputs found

    Information Fusion of Magnetic Resonance Images and Mammographic Scans for Improved Diagnostic Management of Breast Cancer

    Get PDF
    Medical imaging is critical to non-invasive diagnosis and treatment of a wide spectrum of medical conditions. However, different modalities of medical imaging employ/apply di erent contrast mechanisms and, consequently, provide different depictions of bodily anatomy. As a result, there is a frequent problem where the same pathology can be detected by one type of medical imaging while being missed by others. This problem brings forward the importance of the development of image processing tools for integrating the information provided by different imaging modalities via the process of information fusion. One particularly important example of clinical application of such tools is in the diagnostic management of breast cancer, which is a prevailing cause of cancer-related mortality in women. Currently, the diagnosis of breast cancer relies mainly on X-ray mammography and Magnetic Resonance Imaging (MRI), which are both important throughout different stages of detection, localization, and treatment of the disease. The sensitivity of mammography, however, is known to be limited in the case of relatively dense breasts, while contrast enhanced MRI tends to yield frequent 'false alarms' due to its high sensitivity. Given this situation, it is critical to find reliable ways of fusing the mammography and MRI scans in order to improve the sensitivity of the former while boosting the specificity of the latter. Unfortunately, fusing the above types of medical images is known to be a difficult computational problem. Indeed, while MRI scans are usually volumetric (i.e., 3-D), digital mammograms are always planar (2-D). Moreover, mammograms are invariably acquired under the force of compression paddles, thus making the breast anatomy undergo sizeable deformations. In the case of MRI, on the other hand, the breast is rarely constrained and imaged in a pendulous state. Finally, X-ray mammography and MRI exploit two completely di erent physical mechanisms, which produce distinct diagnostic contrasts which are related in a non-trivial way. Under such conditions, the success of information fusion depends on one's ability to establish spatial correspondences between mammograms and their related MRI volumes in a cross-modal cross-dimensional (CMCD) setting in the presence of spatial deformations (+SD). Solving the problem of information fusion in the CMCD+SD setting is a very challenging analytical/computational problem, still in need of efficient solutions. In the literature, there is a lack of a generic and consistent solution to the problem of fusing mammograms and breast MRIs and using their complementary information. Most of the existing MRI to mammogram registration techniques are based on a biomechanical approach which builds a speci c model for each patient to simulate the effect of mammographic compression. The biomechanical model is not optimal as it ignores the common characteristics of breast deformation across different cases. Breast deformation is essentially the planarization of a 3-D volume between two paddles, which is common in all patients. Regardless of the size, shape, or internal con guration of the breast tissue, one can predict the major part of the deformation only by considering the geometry of the breast tissue. In contrast with complex standard methods relying on patient-speci c biomechanical modeling, we developed a new and relatively simple approach to estimate the deformation and nd the correspondences. We consider the total deformation to consist of two components: a large-magnitude global deformation due to mammographic compression and a residual deformation of relatively smaller amplitude. We propose a much simpler way of predicting the global deformation which compares favorably to FEM in terms of its accuracy. The residual deformation, on the other hand, is recovered in a variational framework using an elastic transformation model. The proposed algorithm provides us with a computational pipeline that takes breast MRIs and mammograms as inputs and returns the spatial transformation which establishes the correspondences between them. This spatial transformation can be applied in different applications, e.g., producing 'MRI-enhanced' mammograms (which is capable of improving the quality of surgical care) and correlating between different types of mammograms. We investigate the performance of our proposed pipeline on the application of enhancing mammograms by means of MRIs and we have shown improvements over the state of the art

    DEFORM'06 - Proceedings of the Workshop on Image Registration in Deformable Environments

    Get PDF
    Preface These are the proceedings of DEFORM'06, the Workshop on Image Registration in Deformable Environments, associated to BMVC'06, the 17th British Machine Vision Conference, held in Edinburgh, UK, in September 2006. The goal of DEFORM'06 was to bring together people from different domains having interests in deformable image registration. In response to our Call for Papers, we received 17 submissions and selected 8 for oral presentation at the workshop. In addition to the regular papers, Andrew Fitzgibbon from Microsoft Research Cambridge gave an invited talk at the workshop. The conference website including online proceedings remains open, see http://comsee.univ-bpclermont.fr/events/DEFORM06. We would like to thank the BMVC'06 co-chairs, Mike Chantler, Manuel Trucco and especially Bob Fisher for is great help in the local arrangements, Andrew Fitzgibbon, and the Programme Committee members who provided insightful reviews of the submitted papers. Special thanks go to Marc Richetin, head of the CNRS Research Federation TIMS, which sponsored the workshop. August 2006 Adrien Bartoli Nassir Navab Vincent Lepeti

    Numerical Approaches for Solving the Combined Reconstruction and Registration of Digital Breast Tomosynthesis

    Get PDF
    Heavy demands on the development of medical imaging modalities for breast cancer detection have been witnessed in the last three decades in an attempt to reduce the mortality associated with the disease. Recently, Digital Breast Tomosynthesis (DBT) shows its promising in the early diagnosis when lesions are small. In particular, it offers potential benefits over X-ray mammography - the current modality of choice for breast screening - of increased sensitivity and specificity for comparable X-ray dose, speed, and cost. An important feature of DBT is that it provides a pseudo-3D image of the breast. This is of particular relevance for heterogeneous dense breasts of young women, which can inhibit detection of cancer using conventional mammography. In the same way that it is difficult to see a bird from the edge of the forest, detecting cancer in a conventional 2D mammogram is a challenging task. Three-dimensional DBT, however, enables us to step through the forest, i.e., the breast, reducing the confounding effect of superimposed tissue and so (potentially) increasing the sensitivity and specificity of cancer detection. The workflow in which DBT would be used clinically, involves two key tasks: reconstruction, to generate a 3D image of the breast, and registration, to enable images from different visits to be compared as is routinely performed by radiologists working with conventional mammograms. Conventional approaches proposed in the literature separate these steps, solving each task independently. This can be effective if reconstructing using a complete set of data. However, for ill-posed limited-angle problems such as DBT, estimating the deformation is difficult because of the significant artefacts associated with DBT reconstructions, leading to severe inaccuracies in the registration. The aim of my work is to find and evaluate methods capable of allying these two tasks, which will enhance the performance of each process as a result. Consequently, I prove that the processes of reconstruction and registration of DBT are not independent but reciprocal. This thesis proposes innovative numerical approaches combining reconstruction of a pair of temporal DBT acquisitions with their registration iteratively and simultaneously. To evaluate the performance of my methods I use synthetic images, breast MRI, and DBT simulations with in-vivo breast compressions. I show that, compared to the conventional sequential method, jointly estimating image intensities and transformation parameters gives superior results with respect to both reconstruction fidelity and registration accuracy

    Multimodal breast imaging: Registration, visualization, and image synthesis

    Get PDF
    The benefit of registration and fusion of functional images with anatomical images is well appreciated in the advent of combined positron emission tomography and x-ray computed tomography scanners (PET/CT). This is especially true in breast cancer imaging, where modalities such as high-resolution and dynamic contrast-enhanced magnetic resonance imaging (MRI) and F-18-FDG positron emission tomography (PET) have steadily gained acceptance in addition to x-ray mammography, the primary detection tool. The increased interest in combined PET/MRI images has facilitated the demand for appropriate registration and fusion algorithms. A new approach to MRI-to-PET non-rigid breast image registration was developed and evaluated based on the location of a small number of fiducial skin markers (FSMs) visible in both modalities. The observed FSM displacement vectors between MRI and PET, distributed piecewise linearly over the breast volume, produce a deformed Finite-Element mesh that reasonably approximates non-rigid deformation of the breast tissue between the MRI and PET scans. The method does not require a biomechanical breast tissue model, and is robust and fast. The method was evaluated both qualitatively and quantitatively on patients and a deformable breast phantom. The procedure yields quality images with average target registration error (TRE) below 4 mm. The importance of appropriately jointly displaying (i.e. fusing) the registered images has often been neglected and underestimated. A combined MRI/PET image has the benefits of directly showing the spatial relationships between the two modalities, increasing the sensitivity, specificity, and accuracy of diagnosis. Additional information on morphology and on dynamic behavior of the suspicious lesion can be provided, allowing more accurate lesion localization including mapping of hyper- and hypo-metabolic regions as well as better lesion-boundary definition, improving accuracy when grading the breast cancer and assessing the need for biopsy. Eight promising fusion-for-visualization techniques were evaluated by radiologists from University Hospital, in Syracuse, NY. Preliminary results indicate that the radiologists were better able to perform a series of tasks when reading the fused PET/MRI data sets using color tables generated by a newly developed genetic algorithm, as compared to other commonly used schemes. The lack of a known ground truth hinders the development and evaluation of new algorithms for tasks such as registration and classification. A preliminary mesh-based breast phantom containing 12 distinct tissue classes along with tissue properties necessary for the simulation of dynamic positron emission tomography scans was created. The phantom contains multiple components which can be separately manipulated, utilizing geometric transformations, to represent populations or a single individual being imaged in multiple positions. This phantom will support future multimodal breast imaging work

    Deformable Medical Image Registration: A Survey

    Get PDF
    Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: i) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; ii) longitudinal studies, where temporal structural or anatomical changes are investigated; and iii) population modeling and statistical atlases used to study normal anatomical variability. In this technical report, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this technical report is to provide an extensive account of registration techniques in a systematic manner.Le recalage déformable d'images est une des tâches les plus fondamentales dans l'imagerie médicale. Parmi ses applications les plus importantes, on compte: i) la fusion d' information provenant des différents types de modalités a n de faciliter le diagnostic et la planification du traitement; ii) les études longitudinales, oú des changements structurels ou anatomiques sont étudiées en fonction du temps; et iii) la modélisation de la variabilité anatomique normale d'une population et les atlas statistiques. Dans ce rapport de recherche, nous essayons de donner un aperçu des différentes méthodes du recalage déformables, en mettant l'accent sur les avancées les plus récentes du domaine. Nous avons particulièrement insisté sur les techniques appliquées aux images médicales. A n d'étudier les méthodes du recalage d'images, leurs composants principales sont d'abord identifiés puis étudiées de manière indépendante, les techniques les plus récentes étant classifiées en suivant un schéma logique déterminé. La contribution de ce rapport de recherche est de fournir un compte rendu détaillé des techniques de recalage d'une manière systématique

    Medical image registration and soft tissue deformation for image guided surgery system

    Get PDF
    In parallel with the developments in imaging modalities, image-guided surgery (IGS) can now provide the surgeon with high quality three-dimensional images depicting human anatomy. Although IGS is now in widely use in neurosurgery, there remain some limitations that must be overcome before it can be employed in more general minimally invasive procedures. In this thesis, we have developed several contributions to the field of medical image registration and brain tissue deformation modeling. From the methodology point of view, medical image registration algorithms can be classified into feature-based and intensity-based methods. One of the challenges faced by feature-based registration would be to determine which specific type of feature is desired for a given task and imaging type. For this reason, a point set registration using points and curves feature is proposed, which has the accuracy of registration based on points and the robustness of registration based on lines or curves. We have also tackled the problem on rigid registration of multimodal images using intensity-based similarity measures. Mutual information (MI) has emerged in recent years as a popular similarity metric and widely being recognized in the field of medical image registration. Unfortunately, it ignores the spatial information contained in the images such as edges and corners that might be useful in the image registration. We introduce a new similarity metric, called Adaptive Mutual Information (AMI) measure which incorporates the gradient spatial information. Salient pixels in the regions with high gradient value will contribute more in the estimation of mutual information of image pairs being registered. Experimental results showed that our proposed method improves registration accuracy and it is more robust to noise images which have large deviation from the reference image. Along with this direction, we further improve the technique to simultaneously use all information obtained from multiple features. Using multiple spatial features, the proposed algorithm is less sensitive to the effect of noise and some inherent variations, giving more accurate registration. Brain shift is a complex phenomenon and there are many different reasons causing brain deformation. We have investigated the pattern of brain deformation with respect to location and magnitude and to consider the implications of this pattern for correcting brain deformation in IGS systems. A computational finite element analysis was carried out to analyze the deformation and stress tensor experienced by the brain tissue during surgical operations. Finally, we have developed a prototype visualization display and navigation platform for interpretation of IGS. The system is based upon Qt (cross-platform GUI toolkit) and it integrates VTK (an object-oriented visualization library) as the rendering kernel. Based on the construction of a visualization software platform, we have laid a foundation on the future research to be extended to implement brain tissue deformation into the system

    Mammography Techniques and Review

    Get PDF
    Mammography remains at the backbone of medical tools to examine the human breast. The early detection of breast cancer typically uses adjunct tests to mammogram such as ultrasound, positron emission mammography, electrical impedance, Computer-aided detection systems and others. In the present digital era it is even more important to use the best new techniques and systems available to improve the correct diagnosis and to prevent mortality from breast cancer. The first part of this book deals with the electrical impedance mammographic scheme, ultrasound axillary imaging, position emission mammography and digital mammogram enhancement. A detailed consideration of CBR CAD System and the availability of mammographs in Brazil forms the second part of this book. With the up-to-date papers from world experts, this book will be invaluable to anyone who studies the field of mammography

    Medical image registration and soft tissue deformation for image guided surgery system

    Get PDF
    In parallel with the developments in imaging modalities, image-guided surgery (IGS) can now provide the surgeon with high quality three-dimensional images depicting human anatomy. Although IGS is now in widely use in neurosurgery, there remain some limitations that must be overcome before it can be employed in more general minimally invasive procedures. In this thesis, we have developed several contributions to the field of medical image registration and brain tissue deformation modeling. From the methodology point of view, medical image registration algorithms can be classified into feature-based and intensity-based methods. One of the challenges faced by feature-based registration would be to determine which specific type of feature is desired for a given task and imaging type. For this reason, a point set registration using points and curves feature is proposed, which has the accuracy of registration based on points and the robustness of registration based on lines or curves. We have also tackled the problem on rigid registration of multimodal images using intensity-based similarity measures. Mutual information (MI) has emerged in recent years as a popular similarity metric and widely being recognized in the field of medical image registration. Unfortunately, it ignores the spatial information contained in the images such as edges and corners that might be useful in the image registration. We introduce a new similarity metric, called Adaptive Mutual Information (AMI) measure which incorporates the gradient spatial information. Salient pixels in the regions with high gradient value will contribute more in the estimation of mutual information of image pairs being registered. Experimental results showed that our proposed method improves registration accuracy and it is more robust to noise images which have large deviation from the reference image. Along with this direction, we further improve the technique to simultaneously use all information obtained from multiple features. Using multiple spatial features, the proposed algorithm is less sensitive to the effect of noise and some inherent variations, giving more accurate registration. Brain shift is a complex phenomenon and there are many different reasons causing brain deformation. We have investigated the pattern of brain deformation with respect to location and magnitude and to consider the implications of this pattern for correcting brain deformation in IGS systems. A computational finite element analysis was carried out to analyze the deformation and stress tensor experienced by the brain tissue during surgical operations. Finally, we have developed a prototype visualization display and navigation platform for interpretation of IGS. The system is based upon Qt (cross-platform GUI toolkit) and it integrates VTK (an object-oriented visualization library) as the rendering kernel. Based on the construction of a visualization software platform, we have laid a foundation on the future research to be extended to implement brain tissue deformation into the system

    Similarity Classification and Retrieval in Cancer Images and Informatics

    Get PDF
    Techniques in image similarity, classification, and retrieval of breast cancer images and informatics are presented in this thesis. Breast cancer images in the mammogram modality have a lot of non-cancerous structures that are similar to cancer, which makes them especially difficult to work with. Only the cancerous part of the image is relevant, so the techniques must learn to recognize cancer in noisy mammograms and extract features from that cancer to classify or retrieve similar images. There are also many types or classes of cancer with different characteristics over which the system must work. Mammograms come in sets of four, two images of each breast, which enables comparison of the left and right breast images to help determine relevant features and remove irrelevant features. Image feature comparisons are used to create a similarity function that works well in the high-dimensional space of image features. The similarity function is learned on an underlying clustering and then integrated to produce an agglomeration that is relevant to the images. This technique diagnoses breast cancer more accurately than commercial systems and other published results. In order to collect new data and capture the medical diagnosis used to create and improve these methods, as well as develop relevant feedback, an innovative image retrieval, diagnosis capture, and multiple image viewing tool is presented to fulfill the needs of radiologists. Additionally, retrieval and classification of prostate cancer data is improved using new high-dimensional techniques like dimensionally-limited distance functions and dimensional choice
    corecore