10 research outputs found

    Differential geometry methods for biomedical image processing : from segmentation to 2D/3D registration

    Get PDF
    This thesis establishes a biomedical image analysis framework for the advanced visualization of biological structures. It consists of two important parts: 1) the segmentation of some structures of interest in 3D medical scans, and 2) the registration of patient-specific 3D models with 2D interventional images. Segmenting biological structures results in 3D computational models that are simple to visualize and that can be analyzed quantitatively. Registering a 3D model with interventional images permits to position the 3D model within the physical world. By combining the information from a 3D model and 2D interventional images, the proposed framework can improve the guidance of surgical intervention by reducing the ambiguities inherent to the interpretation of 2D images. Two specific segmentation problems are considered: 1) the segmentation of large structures with low frequency intensity nonuniformity, and 2) the detection of fine curvilinear structures. First, we directed our attention toward the segmentation of relatively large structures with low frequency intensity nonuniformity. Such structures are important in medical imaging since they are commonly encountered in MRI. Also, the nonuniform diffusion of the contrast agent in some other modalities, such as CTA, leads to structures of nonuniform appearance. A level-set method that uses a local-linear region model is defined, and applied to the challenging problem of segmenting brain tissues in MRI. The unique characteristics of the proposed method permit to account for important image nonuniformity implicitly. To the best of our knowledge, this is the first time a region-based level-set model has been used to perform the segmentation of real world MRI brain scans with convincing results. The second segmentation problem considered is the detection of fine curvilinear structures in 3D medical images. Detecting those structures is crucial since they can represent veins, arteries, bronchi or other important tissues. Unfortunately, most currently available curvilinear structure detection filters incur significant signal lost at bifurcations of two structures. This peculiarity limits the performance of all subsequent processes, whether it be understanding an angiography acquisition, computing an accurate tractography, or automatically classifying the image voxels. This thesis presents a new curvilinear structure detection filter that is robust to the presence of X- and Y-junctions. At the same time, it is conceptually simple and deterministic, and allows for an intuitive representation of the structure’s principal directions. Once a 3D computational model is available, it can be used to enhance surgical guidance. A 2D/3D non-rigid method is proposed that brings a 3D centerline model of the coronary arteries into correspondence with bi-plane fluoroscopic angiograms. The registered model is overlaid on top of the interventional angiograms to provide surgical assistance during image-guided chronic total occlusion procedures, which reduces the uncertainty inherent in 2D interventional images. A fully non-rigid registration model is proposed and used to compensate for any local shape discrepancy. This method is based on a variational framework, and uses a simultaneous matching and reconstruction process. With a typical run time of less than 3 seconds, the algorithms are fast enough for interactive applications

    A Nonparametric Shape Prior Constrained Active Contour Model for Segmentation of Coronaries in CTA Images

    No full text
    We present a nonparametric shape constrained algorithm for segmentation of coronary arteries in computed tomography images within the framework of active contours. An adaptive scale selection scheme, based on the global histogram information of the image data, is employed to determine the appropriate window size for each point on the active contour, which improves the performance of the active contour model in the low contrast local image regions. The possible leakage, which cannot be identified by using intensity features alone, is reduced through the application of the proposed shape constraint, where the shape of circular sampled intensity profile is used to evaluate the likelihood of current segmentation being considered vascular structures. Experiments on both synthetic and clinical datasets have demonstrated the efficiency and robustness of the proposed method. The results on clinical datasets have shown that the proposed approach is capable of extracting more detailed coronary vessels with subvoxel accuracy

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text

    Infective/inflammatory disorders

    Get PDF

    Novel molecular imaging of cardiovascular disease in man

    Get PDF
    Cardiovascular disease remains the commonest cause of death worldwide. The majority of deaths are caused by atherosclerotic plaque rupture with resultant myocardial infarction or stroke, or rupture of abdominal aortic aneurysms. Conventional imaging modalities have consistently failed to identify atherosclerotic plaques or aneurysms with high-risk pathological features that are at highest risk of rupture or progression. The development of modern molecular imaging techniques targeted at these features could lead to the identification of such high-risk plaques and aneurysms in vivo and guide the development of novel treatment strategies. The aim of this thesis was to evaluate whether novel molecular modalities have a role in providing new insights into biological disease processes, and identify high-risk plaques and aneurysms. Using positron emission tomography-computed tomography (PET-CT), 18F-fluorodeoxyglucose and 18F-fluoride were utilised as markers of metabolic inflammation and active calcification. Cellular inflammation was assessed using ultrasmall superparamagnetic particles of iron oxide (USPIO) enhanced magnetic resonance imaging (MRI). In a prospective trial, 80 patients with myocardial infarction (n=40) and stable angina (n=40) underwent 18F-fluoride and 18F-fluorodeoxyglucose PET-CT, and invasive coronary angiography (Chapter 3). Intense 18F-fluoride uptake localised to recently ruptured plaque in patients with acute myocardial infarction. In patients with stable coronary artery disease, 18F-fluoride uptake identified coronary plaques with high-risk features on intravascular ultrasound. 18F-fluoride PET-CT is the first noninvasive imaging method to identify and localise ruptured and high-risk coronary plaques. Aortic vascular uptake of 18F- fluorodeoxyglucose was studied in patients with myocardial infarction and stable angina (Chapter 4). In a separate outcome of 1,003 patients enrolled in the Global Registry of Acute Coronary Events, we further evaluated whether infarct size predicted recurrent coronary events. Patients with myocardial infarction had higher remote atherosclerotic tracer uptake that correlated with the degree of myocardial necrosis, and exceeded that observed in patients with stable coronary disease. The outcome cohort demonstrated that patients with higher degree of myocardial necrosis had the highest risk of early recurrent myocardial infarction. This supports the hypothesis that acute myocardial infarction exacerbates systemic atherosclerotic inflammation and remote plaque destabilization: myocardial infarction begets myocardial infarction. In a prospective imaging cohort, the role inflammation and calcification was assessed in 63 patients with abdominal aortic aneurysms and 19 age and sex matched patients with atherosclerosis (Chapter 5). Compared to non-aneurysmal segments, enhanced inflammation and calcification was observed within the wall of aortic aneurysmal segments. In comparison to matched controls with atherosclerosis, the entire aorta in those with aortic aneurysm appears more highly inflamed, suggesting presence of a global aortopathy rather than a disease confined only to the abdominal region of the aorta. Aortic aneurysms have greater active inflammation and calcification than atherosclerotic controls suggesting a more intense, destructive and transmural pathological process. A subgroup of fifteen patients with aortic aneurysms underwent imaging with both PET-CT with 18F-fluorodeoxyglucose, and T2*- weighted MRI before and 24 h after administration of USPIO (Chapter 6). Whilst there was a moderate correlation between the two tracers, there were distinct differences in the pattern and distribution of uptake suggesting a differential detection of macrophage glycolytic and phagocytic activity respectively. These studies provide novel insights into vascular biological processes involved in the initiation, progression and rupture of atherosclerotic plaques and aortic aneurysms. Future longitudinal studies are needed to establish whether these techniques have a role in improving the clinical management and treatment of patients with coronary artery disease and aortic aneurysms

    [<sup>18</sup>F]fluorination of biorelevant arylboronic acid pinacol ester scaffolds synthesized by convergence techniques

    Get PDF
    Aim: The development of small molecules through convergent multicomponent reactions (MCR) has been boosted during the last decade due to the ability to synthesize, virtually without any side-products, numerous small drug-like molecules with several degrees of structural diversity.(1) The association of positron emission tomography (PET) labeling techniques in line with the “one-pot” development of biologically active compounds has the potential to become relevant not only for the evaluation and characterization of those MCR products through molecular imaging, but also to increase the library of radiotracers available. Therefore, since the [18F]fluorination of arylboronic acid pinacol ester derivatives tolerates electron-poor and electro-rich arenes and various functional groups,(2) the main goal of this research work was to achieve the 18F-radiolabeling of several different molecules synthesized through MCR. Materials and Methods: [18F]Fluorination of boronic acid pinacol esters was first extensively optimized using a benzaldehyde derivative in relation to the ideal amount of Cu(II) catalyst and precursor to be used, as well as the reaction solvent. Radiochemical conversion (RCC) yields were assessed by TLC-SG. The optimized radiolabeling conditions were subsequently applied to several structurally different MCR scaffolds comprising biologically relevant pharmacophores (e.g. ÎČ-lactam, morpholine, tetrazole, oxazole) that were synthesized to specifically contain a boronic acid pinacol ester group. Results: Radiolabeling with fluorine-18 was achieved with volumes (800 ÎŒl) and activities (≀ 2 GBq) compatible with most radiochemistry techniques and modules. In summary, an increase in the quantities of precursor or Cu(II) catalyst lead to higher conversion yields. An optimal amount of precursor (0.06 mmol) and Cu(OTf)2(py)4 (0.04 mmol) was defined for further reactions, with DMA being a preferential solvent over DMF. RCC yields from 15% to 76%, depending on the scaffold, were reproducibly achieved. Interestingly, it was noticed that the structure of the scaffolds, beyond the arylboronic acid, exerts some influence in the final RCC, with electron-withdrawing groups in the para position apparently enhancing the radiolabeling yield. Conclusion: The developed method with high RCC and reproducibility has the potential to be applied in line with MCR and also has a possibility to be incorporated in a later stage of this convergent “one-pot” synthesis strategy. Further studies are currently ongoing to apply this radiolabeling concept to fluorine-containing approved drugs whose boronic acid pinacol ester precursors can be synthesized through MCR (e.g. atorvastatin)

    Smoking and Second Hand Smoking in Adolescents with Chronic Kidney Disease: A Report from the Chronic Kidney Disease in Children (CKiD) Cohort Study

    Get PDF
    The goal of this study was to determine the prevalence of smoking and second hand smoking [SHS] in adolescents with CKD and their relationship to baseline parameters at enrollment in the CKiD, observational cohort study of 600 children (aged 1-16 yrs) with Schwartz estimated GFR of 30-90 ml/min/1.73m2. 239 adolescents had self-report survey data on smoking and SHS exposure: 21 [9%] subjects had “ever” smoked a cigarette. Among them, 4 were current and 17 were former smokers. Hypertension was more prevalent in those that had “ever” smoked a cigarette (42%) compared to non-smokers (9%), p\u3c0.01. Among 218 non-smokers, 130 (59%) were male, 142 (65%) were Caucasian; 60 (28%) reported SHS exposure compared to 158 (72%) with no exposure. Non-smoker adolescents with SHS exposure were compared to those without SHS exposure. There was no racial, age, or gender differences between both groups. Baseline creatinine, diastolic hypertension, C reactive protein, lipid profile, GFR and hemoglobin were not statistically different. Significantly higher protein to creatinine ratio (0.90 vs. 0.53, p\u3c0.01) was observed in those exposed to SHS compared to those not exposed. Exposed adolescents were heavier than non-exposed adolescents (85th percentile vs. 55th percentile for BMI, p\u3c 0.01). Uncontrolled casual systolic hypertension was twice as prevalent among those exposed to SHS (16%) compared to those not exposed to SHS (7%), though the difference was not statistically significant (p= 0.07). Adjusted multivariate regression analysis [OR (95% CI)] showed that increased protein to creatinine ratio [1.34 (1.03, 1.75)] and higher BMI [1.14 (1.02, 1.29)] were independently associated with exposure to SHS among non-smoker adolescents. These results reveal that among adolescents with CKD, cigarette use is low and SHS is highly prevalent. The association of smoking with hypertension and SHS with increased proteinuria suggests a possible role of these factors in CKD progression and cardiovascular outcomes
    corecore