2,618 research outputs found

    A nonlinear lower bound on the practical combinational complexity

    Get PDF
    AbstractAn infinite sequence F = {fn}n = 1∞ of one-output Boolean functions with the following two properties is constructed: 1.(1)fn can be computed by a Boolean circuit with O(n) gates.2.(2)For any positive, nondecreasing, and unbounded function h : N → R, each Boolean circuit having an mh(m) separator requires a nonlinear number Ω(nh(n)) of gates to compute fn (e.g., each planar Boolean circuit requires Ω(n2) gates to compute fn).Thus, one can say that fn has linear combinational complexity and a nonlinear practical combinational complexity because the constant-degree parallel architectures used in practice have separators in O(mlog2 m)

    Fast Parallel Randomized Algorithm for Nonnegative Matrix Factorization with KL Divergence for Large Sparse Datasets

    Get PDF
    Nonnegative Matrix Factorization (NMF) with Kullback-Leibler Divergence (NMF-KL) is one of the most significant NMF problems and equivalent to Probabilistic Latent Semantic Indexing (PLSI), which has been successfully applied in many applications. For sparse count data, a Poisson distribution and KL divergence provide sparse models and sparse representation, which describe the random variation better than a normal distribution and Frobenius norm. Specially, sparse models provide more concise understanding of the appearance of attributes over latent components, while sparse representation provides concise interpretability of the contribution of latent components over instances. However, minimizing NMF with KL divergence is much more difficult than minimizing NMF with Frobenius norm; and sparse models, sparse representation and fast algorithms for large sparse datasets are still challenges for NMF with KL divergence. In this paper, we propose a fast parallel randomized coordinate descent algorithm having fast convergence for large sparse datasets to archive sparse models and sparse representation. The proposed algorithm's experimental results overperform the current studies' ones in this problem

    Provably Secure Cryptographic Constructions

    Get PDF

    Non-classical computing: feasible versus infeasible

    Get PDF
    Physics sets certain limits on what is and is not computable. These limits are very far from having been reached by current technologies. Whilst proposals for hypercomputation are almost certainly infeasible, there are a number of non classical approaches that do hold considerable promise. There are a range of possible architectures that could be implemented on silicon that are distinctly different from the von Neumann model. Beyond this, quantum simulators, which are the quantum equivalent of analogue computers, may be constructable in the near future
    • 

    corecore