603 research outputs found

    Improving large-scale k-nearest neighbor text categorization with label autoencoders

    Get PDF
    In this paper, we introduce a multi-label lazy learning approach to deal with automatic semantic indexing in large document collections in the presence of complex and structured label vocabularies with high inter-label correlation. The proposed method is an evolution of the traditional k-Nearest Neighbors algorithm which uses a large autoencoder trained to map the large label space to a reduced size latent space and to regenerate the predicted labels from this latent space. We have evaluated our proposal in a large portion of the MEDLINE biomedical document collection which uses the Medical Subject Headings (MeSH) thesaurus as a controlled vocabulary. In our experiments we propose and evaluate several document representation approaches and different label autoencoder configurations.Ministerio de Ciencia e Innovación | Ref. PID2020-113230RB-C2

    Visualizing and Understanding Sum-Product Networks

    Full text link
    Sum-Product Networks (SPNs) are recently introduced deep tractable probabilistic models by which several kinds of inference queries can be answered exactly and in a tractable time. Up to now, they have been largely used as black box density estimators, assessed only by comparing their likelihood scores only. In this paper we explore and exploit the inner representations learned by SPNs. We do this with a threefold aim: first we want to get a better understanding of the inner workings of SPNs; secondly, we seek additional ways to evaluate one SPN model and compare it against other probabilistic models, providing diagnostic tools to practitioners; lastly, we want to empirically evaluate how good and meaningful the extracted representations are, as in a classic Representation Learning framework. In order to do so we revise their interpretation as deep neural networks and we propose to exploit several visualization techniques on their node activations and network outputs under different types of inference queries. To investigate these models as feature extractors, we plug some SPNs, learned in a greedy unsupervised fashion on image datasets, in supervised classification learning tasks. We extract several embedding types from node activations by filtering nodes by their type, by their associated feature abstraction level and by their scope. In a thorough empirical comparison we prove them to be competitive against those generated from popular feature extractors as Restricted Boltzmann Machines. Finally, we investigate embeddings generated from random probabilistic marginal queries as means to compare other tractable probabilistic models on a common ground, extending our experiments to Mixtures of Trees.Comment: Machine Learning Journal paper (First Online), 24 page

    End-to-end deep auto-encoder for segmenting a moving object with limited training data

    Get PDF
    Deep learning-based approaches have been widely used in various applications, including segmentation and classification. However, a large amount of data is required to train such techniques. Indeed, in the surveillance video domain, there are few accessible data due to acquisition and experiment complexity. In this paper, we propose an end-to-end deep auto-encoder system for object segmenting from surveillance videos. Our main purpose is to enhance the process of distinguishing the foreground object when only limited data are available. To this end, we propose two approaches based on transfer learning and multi-depth auto-encoders to avoid over-fitting by combining classical data augmentation and principal component analysis (PCA) techniques to improve the quality of training data. Our approach achieves good results outperforming other popular models, which used the same principle of training with limited data. In addition, a detailed explanation of these techniques and some recommendations are provided. Our methodology constitutes a useful strategy for increasing samples in the deep learning domain and can be applied to improve segmentation accuracy. We believe that our strategy has a considerable interest in various applications such as medical and biological fields, especially in the early stages of experiments where there are few samples

    Human Activity Recognition Based on Multimodal Body Sensing

    Get PDF
    In the recent years, human activity recognition has been widely popularized by a lot of smartphone manufacturers and fitness tracking companies. It has allowed us to gain a deeper insight into our physical health on a daily basis. However, with the evolution of fitness tracking devices and smartphones, the amount of data that is being captured by these devices is growing exponentially. This paper aims at understanding the process of dimensionality reduction such as PCA so that the data can be used to make meaningful predictions along with novel techniques using autoencoders with different activation functions. The paper also looks into how using autoencoders allows us to better capture the relations between features in the data. It also covers some of the classification techniques such as k-Nearest Neighbors, SVM and Random forest that are currently being used for activity recognition that have shown promising results
    • …
    corecore