7,111 research outputs found

    Chaotic and pseudochaotic attractors of perturbed fractional oscillator

    Full text link
    We consider a nonlinear oscillator with fractional derivative of the order alpha. Perturbed by a periodic force, the system exhibits chaotic motion called fractional chaotic attractor (FCA). The FCA is compared to the ``regular'' chaotic attractor. The properties of the FCA are discussed and the ``pseudochaotic'' case is demonstrated.Comment: 20 pages, 7 figure

    Fractional Dynamical Systems

    Full text link
    In this paper the author presents the results of the preliminary investigation of fractional dynamical systems based on the results of numerical simulations of fractional maps. Fractional maps are equivalent to fractional differential equations describing systems experiencing periodic kicks. Their properties depend on the value of two parameters: the non-linearity parameter, which arises from the corresponding regular dynamical systems; and the memory parameter which is the order of the fractional derivative in the corresponding non-linear fractional differential equations. The examples of the fractional Standard and Logistic maps demonstrate that phase space of non-linear fractional dynamical systems may contain periodic sinks, attracting slow diverging trajectories, attracting accelerator mode trajectories, chaotic attractors, and cascade of bifurcations type trajectories whose properties are different from properties of attractors in regular dynamical systems. The author argues that discovered properties should be evident in the natural (biological, psychological, physical, etc.) and engineering systems with power-law memory.Comment: 6 pages, 4 figure

    Analyzing stability of a delay differential equation involving two delays

    Full text link
    Analysis of the systems involving delay is a popular topic among applied scientists. In the present work, we analyze the generalized equation Dαx(t)=g(x(t−τ1),x(t−τ2))D^{\alpha} x(t) = g\left(x(t-\tau_1), x(t-\tau_2)\right) involving two delays viz. τ1≥0\tau_1\geq 0 and τ2≥0\tau_2\geq 0. We use the the stability conditions to propose the critical values of delays. Using examples, we show that the chaotic oscillations are observed in the unstable region only. We also propose a numerical scheme to solve such equations.Comment: 10 pages, 7 figure
    • …
    corecore