325 research outputs found

    Detection of emotions in Parkinson's disease using higher order spectral features from brain's electrical activity

    Get PDF
    Non-motor symptoms in Parkinson's disease (PD) involving cognition and emotion have been progressively receiving more attention in recent times. Electroencephalogram (EEG) signals, being an activity of central nervous system, can reflect the underlying true emotional state of a person. This paper presents a computational framework for classifying PD patients compared to healthy controls (HC) using emotional information from the brain's electrical activity

    A deep learning approach for parkinson’s disease severity assessment

    Get PDF
    Purpose: Parkinson’s Disease comes on top among neurodegenerative diseases affecting 10 million worldwide. To detect Parkinson’s Disease in a prior state, gait analysis is an effective choice. However, monitoring of Parkinson’s Disease using gait analysis is time consuming and exhaustive for patients and physicians. To assess severity of symptoms, a rating scale called Unified Parkinson's Disease Rating Scale is used. It determines mild and severe cases. Today, Parkinson’s Disease severity assessment is made in gait laboratories and by manual examination. These are time consuming and it is costly for health institutions to build and maintain laboratories. By using low-cost wearables and an effective model, aforementioned problems can be solved. Methods: We provide a computerized solution for quantifiable assessment of Parkinson’s Disease symptoms severity. By using wearable sensors, our framework can predict exact symptom values to assess Parkinson’s Disease severity. We propose a deep learning approach that utilizes Ground Reaction Force sensors. From sensor signals, features are extracted and fed to a hybrid deep learning model. This model is the combination of Convolutional Neural Networks and Locally Weighted Random Forest. Results: Proposed framework achieved 0.897, 3.009, 4.556 in terms of Correlation Coefficient, Mean Absolute Error and Root Mean Square Error, respectively. Proposed framework outperformed other machine and deep learning models. We also evaluated classification performance for disease detection. We outperformed most of the previous studies, achieving 99.5% accuracy, 98.7% sensitivity and 99.1% specificity. Conclusion: This is the first study to use a deep learning regression approach to predict exact symptom value of Parkinson’s Disease patients. Results show that this approach can be effectively employed as a disease severity assessment tool using wearable sensors.publishedVersionPeer reviewe

    Wearable inertial sensors for human movement analysis

    Get PDF
    Introduction: The present review aims to provide an overview of the most common uses of wearable inertial sensors in the field of clinical human movement analysis.Areas covered: Six main areas of application are analysed: gait analysis, stabilometry, instrumented clinical tests, upper body mobility assessment, daily-life activity monitoring and tremor assessment. Each area is analyzed both from a methodological and applicative point of view. The focus on the methodological approaches is meant to provide an idea of the computational complexity behind a variable/parameter/index of interest so that the reader is aware of the reliability of the approach. The focus on the application is meant to provide a practical guide for advising clinicians on how inertial sensors can help them in their clinical practice.Expert commentary: Less expensive and more easy to use than other systems used in human movement analysis, wearable sensors have evolved to the point that they can be considered ready for being part of routine clinical routine

    Mobile EEG reveals functionally dissociable dynamic processes supporting real-world ambulatory obstacle avoidance : evidence for early proactive control

    Get PDF
    This work is supported by a scholarship from the University of Stirling and a reseach grant from SINAPSE (Scottish Imaging Network: A Platform for Scientific excellence). GL is supported by the Wellcome Trust [209209/Z/17/Z].The ability to safely negotiate the world on foot takes humans years to develop, reflecting the huge cognitive demands associated with real‐time planning and control of walking. Despite the importance of walking, methodological limitations mean that surprisingly little is known about the neural and cognitive processes that support ambulatory motor control. Here, we report mobile EEG data recorded from thirty‐two healthy young adults during real‐world ambulatory obstacle avoidance. Participants walked along a path while stepping over expected and unexpected obstacles projected on the floor, allowing us to capture the dynamic oscillatory response to changes in environmental demands. Compared to obstacle‐free walking, time‐frequency analysis of the EEG data revealed clear frontal theta and centro‐parietal beta power neural markers of proactive and reactive forms of movement control (occurring before and after crossing an obstacle). Critically, the temporal profile of changes in frontal theta allowed us to arbitrate between early selection and late adaptation mechanisms of proactive control. Our data show that motor plans are updated as soon as an upcoming obstacle appears, rather than when the obstacle is reached. In addition, regardless of whether motor plans required updating, a clear beta rebound was present after obstacles were crossed, reflecting the resetting of the motor system. Overall, mobile EEG recorded during real‐world walking provides novel insight into the cognitive and neural basis of dynamic motor control in humans, suggesting new routes to the monitoring and rehabilitation of motor disorders such as dyspraxia and Parkinson’s disease.Publisher PDFPeer reviewe
    • 

    corecore