3,365 research outputs found

    Robust Near-Field 3D Localization of an Unaligned Single-Coil Agent Using Unobtrusive Anchors

    Full text link
    The magnetic near-field provides a suitable means for indoor localization, due to its insensitivity to the environment and strong spatial gradients. We consider indoor localization setups consisting of flat coils, allowing for convenient integration of the agent coil into a mobile device (e.g., a smart phone or wristband) and flush mounting of the anchor coils to walls. In order to study such setups systematically, we first express the Cram\'er-Rao lower bound (CRLB) on the position error for unknown orientation and evaluate its distribution within a square room of variable size, using 15 x 10cm anchor coils and a commercial NFC antenna at the agent. Thereby, we find cm-accuracy being achievable in a room of 10 x 10 x 3 meters with 12 flat wall-mounted anchors and with 10mW used for the generation of magnetic fields. Practically achieving such estimation performance is, however, difficult because of the non-convex 5D likelihood function. To that end, we propose a fast and accurate weighted least squares (WLS) algorithm which is insensitive to initialization. This is enabled by effectively eliminating the orientation nuisance parameter in a rigorous fashion and scaling the individual anchor observations, leading to a smoothed 3D cost function. Using WLS estimates to initialize a maximum-likelihood (ML) solver yields accuracy near the theoretical limit in up to 98% of cases, thus enabling robust indoor localization with unobtrusive infrastructure, with a computational efficiency suitable for real-time processing.Comment: 7 pages, to be presented at IEEE PIMRC 201

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery

    Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems

    Get PDF
    Millimeter wave signals and large antenna arrays are considered enabling technologies for future 5G networks. While their benefits for achieving high-data rate communications are well-known, their potential advantages for accurate positioning are largely undiscovered. We derive the Cram\'{e}r-Rao bound (CRB) on position and rotation angle estimation uncertainty from millimeter wave signals from a single transmitter, in the presence of scatterers. We also present a novel two-stage algorithm for position and rotation angle estimation that attains the CRB for average to high signal-to-noise ratio. The algorithm is based on multiple measurement vectors matching pursuit for coarse estimation, followed by a refinement stage based on the space-alternating generalized expectation maximization algorithm. We find that accurate position and rotation angle estimation is possible using signals from a single transmitter, in either line-of- sight, non-line-of-sight, or obstructed-line-of-sight conditions.Comment: The manuscript has been revised, and increased from 27 to 31 pages. Also, Fig.2, Fig. 10 and Table I are adde

    Robust Target Localization Based on Squared Range Iterative Reweighted Least Squares

    Full text link
    In this paper, the problem of target localization in the presence of outlying sensors is tackled. This problem is important in practice because in many real-world applications the sensors might report irrelevant data unintentionally or maliciously. The problem is formulated by applying robust statistics techniques on squared range measurements and two different approaches to solve the problem are proposed. The first approach is computationally efficient; however, only the objective convergence is guaranteed theoretically. On the other hand, the whole-sequence convergence of the second approach is established. To enjoy the benefit of both approaches, they are integrated to develop a hybrid algorithm that offers computational efficiency and theoretical guarantees. The algorithms are evaluated for different simulated and real-world scenarios. The numerical results show that the proposed methods meet the Cr'amer-Rao lower bound (CRLB) for a sufficiently large number of measurements. When the number of the measurements is small, the proposed position estimator does not achieve CRLB though it still outperforms several existing localization methods.Comment: 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS): http://ieeexplore.ieee.org/document/8108770

    An ICP variant using a point-to-line metric

    Get PDF
    This paper describes PLICP, an ICP (iterative closest/corresponding point) variant that uses a point-to-line metric, and an exact closed-form for minimizing such metric. The resulting algorithm has some interesting properties: it converges quadratically, and in a finite number of steps. The method is validated against vanilla ICP, IDC (iterative dual correspondences), and MBICP (Metric-Based ICP) by reproducing the experiments performed in Minguez et al. (2006). The experiments suggest that PLICP is more precise, and requires less iterations. However, it is less robust to very large initial displacement errors. The last part of the paper is devoted to purely algorithmic optimization of the correspondence search; this allows for a significant speed-up of the computation. The source code is available for download
    corecore