2,031 research outputs found

    Comprehensive longitudinal non-invasive quantification of healthspan and frailty in a large cohort (n = 546) of geriatric C57BL/6 J mice

    Get PDF
    Frailty is an age-related condition characterized by a multisystem functional decline, increased vulnerability to stressors, and adverse health outcomes. Quantifying the degree of frailty in humans and animals is a health measure useful for translational geroscience research. Two frailty measurements, namely the frailty phenotype (FP) and the clinical frailty index (CFI), have been validated in mice and are frequently applied in preclinical research. However, these two tools are based on different concepts and do not necessarily identify the same mice as frail. In particular, the FP is based on a dichotomous classification that suffers from high sample size requirements and misclassification problems. Based on the monthly longitudinal non-invasive assessment of frailty in a large cohort of mice, here we develop an alternative scoring method, which we called physical function score (PFS), proposed as a continuous variable that resumes into a unique function, the five criteria included in the FP. This score would not only reduce misclassification of frailty but it also makes the two tools, PFS and CFI, integrable to provide an overall measurement of health, named vitality score (VS) in aging mice. VS displays a higher association with mortality than PFS or CFI and correlates with biomarkers related to the accumulation of senescent cells and the epigenetic clock. This longitudinal non-invasive assessment strategy and the VS may help to overcome the different sensitivity in frailty identification, reduce the sample size in longitudinal experiments, and establish the effectiveness of therapeutic/preventive interventions for frailty or other age-related diseases in geriatric animals

    ANMCO/SIC/SICI-GISE/SICCH Executive Summary of Consensus Document on Risk Stratification in elderly patients with aortic stenosis before surgery or transcatheter aortic valve replacement

    Get PDF
    Aortic stenosis is one of the most frequent valvular diseases in developed countries, and its impact on public health resources and assistance is increasing. A substantial proportion of elderly people with severe aortic stenosis is not eligible to surgery because of the advanced age, frailty, and multiple co-morbidities. Transcatheter aortic valve implantation (TAVI) enables the treatment of very elderly patients at high or prohibitive surgical risk considered ineligible for surgery and with an acceptable life expectancy. However, a significant percentage of patients die or show no improvement in quality of life (QOL) in the follow-up. In the decision-making process, it is important to determine: (i) whether and how much frailty of the patient influences the risk of procedures; (ii) how the QOL and the individual patient's survival are influenced by aortic valve disease or from other associated conditions; and (iii) whether a geriatric specialist intervention to evaluate and correct frailty or other diseases with their potential or already manifest disabilities can improve the outcome of surgery or TAVI. Consequently, in addition to risk stratification with conventional tools, a number of factors including multi-morbidity, disability, frailty, and cognitive function should be considered, in order to assess the expected benefit of both surgery and TAVI. The pre-operative optimization through a multidisciplinary approach with a Heart Team can counteract the multiple damage (cardiac, neurological, muscular, respiratory, and kidney) that can potentially aggravate the reduced physiological reserves characteristic of frailty. The systematic application in clinical practice of multidimensional assessment instruments of frailty and cognitive function in the screening and the adoption of specific care pathways should facilitate this task

    Aging and Vascular Disease: A Multidisciplinary Overview

    Get PDF
    Vascular aging, i.e., the deterioration of the structure and function of the arteries over the life course, predicts cardiovascular events and mortality. Vascular degeneration can be recognized before becoming clinically symptomatic; therefore, its assessment allows the early identification of individuals at risk. This opens the possibility of minimizing disease progression. To review these issues, a search was completed using PubMed, MEDLINE, and Google Scholar from 2000 to date. As a network of clinicians and scientists involved in vascular medicine, we here describe the structural and functional age-dependent alterations of the arteries, the clinical tools for an early diagnosis of vascular aging, and the cellular and molecular events implicated. It emerges that more studies are necessary to identify the best strategy to quantify vascular aging, and to design proper physical activity programs, nutritional and pharmacological strategies, as well as social interventions to prevent, delay, and eventually revert the disease

    A reliable measure of frailty for a community dwelling older population

    Get PDF
    BACKGROUND: Frailty remains an elusive concept despite many efforts to define and measure it. The difficulty in translating the clinical profile of frail elderly people into a quantifiable assessment tool is due to the complex and heterogeneous nature of their health problems. Viewing frailty as a 'latent vulnerability' in older people this study aims to derive a model based measurement of frailty and examines its internal reliability in community dwelling elderly. METHOD: The British Women's Heart and Health Study (BWHHS) cohort of 4286 women aged 60-79 years from 23 towns in Britain provided 35 frailty indicators expressed as binary categorical variables. These indicators were corrected for measurement error and assigned relative weights in its association with frailty. Exploratory factor analysis (EFA) reduced the data to a smaller number of factors and was subjected to confirmatory factor analysis (CFA) which restricted the model by fitting the EFA-driven structure to observed data. Cox regression analysis compared the hazard ratios for adverse outcomes of the newly developed British frailty index (FI) with a widely known FI. This process was replicated in the MRC Assessment study of older people, a larger cohort drawn from 106 general practices in Britain. RESULTS: Seven factors explained the association between frailty indicators: physical ability, cardiac symptoms/disease, respiratory symptoms/disease, physiological measures, psychological problems, co-morbidities and visual impairment. Based on existing concepts and statistical indices of fit, frailty was best described using a General Specific Model. The British FI would serve as a better population metric than the FI as it enables people with varying degrees of frailty to be better distinguished over a wider range of scores. The British FI was a better independent predictor of all-cause mortality, hospitalization and institutionalization than the FI in both cohorts. CONCLUSIONS: Frailty is a multidimensional concept represented by a wide range of latent (not directly observed) attributes. This new measure provides more precise information than is currently recognized, of which cluster of frailty indicators are important in older people. This study could potentially improve quality of life among older people through targeted efforts in early prevention and treatment of frailty

    Frailty and cardiac rehabilitation : A call to action from the EAPC Cardiac Rehabilitation Section

    Get PDF
    Frailty is a geriatric syndrome characterised by a vulnerability status associated with declining function of multiple physiological systems and loss of physiological reserves. Two main models of frailty have been advanced: the phenotypic model (primary frailty) or deficits accumulation model (secondary frailty), and different instruments have been proposed and validated to measure frailty. However measured, frailty correlates to medical outcomes in the elderly, and has been shown to have prognostic value for patients in different clinical settings, such as in patients with coronary artery disease, after cardiac surgery or transvalvular aortic valve replacement, in patients with chronic heart failure or after left ventricular assist device implantation.The prevalence, clinical and prognostic relevance of frailty in a cardiac rehabilitation setting has not yet been well characterised, despite the increasing frequency of elderly patients in cardiac rehabilitation, where frailty is likely to influence the onset, type and intensity of the exercise training programme and the design of tailored rehabilitative interventions for these patients.Therefore, we need to start looking for frailty in elderly patients entering cardiac rehabilitation programmes and become more familiar with some of the tools to recognise and evaluate the severity of this condition. Furthermore, we need to better understand whether exercise-based cardiac rehabilitation may change the course and the prognosis of frailty in cardiovascular patients

    Smartphone-Based Prediction Model for Postoperative Cardiac Surgery Outcomes Using Preoperative Gait and Posture Measures

    Get PDF
    Gait speed assessment increases the predictive value of mortality and morbidity following older adults’ cardiac surgery. The purpose of this study was to improve clinical assessment and prediction of mortality and morbidity among older patients undergoing cardiac surgery through the identification of the relationships between preoperative gait and postural stability characteristics utilizing a noninvasive-wearable mobile phone device and postoperative cardiac surgical outcomes. This research was a prospective study of ambulatory patients aged over 70 years undergoing non-emergent cardiac surgery. Sixteen older adults with cardiovascular disease (Age 76.1 ± 3.6 years) scheduled for cardiac surgery within the next 24 h were recruited for this study. As per the Society of Thoracic Surgeons (STS) recommendation guidelines, eight of the cardiovascular disease (CVD) patients were classified as frail (prone to adverse outcomes with gait speed ≤0.833 m/s) and the remaining eight patients as non-frail (gait speed \u3e0.833 m/s). Treating physicians and patients were blinded to gait and posture assessment results not to influence the decision to proceed with surgery or postoperative management. Follow-ups regarding patient outcomes were continued until patients were discharged or transferred from the hospital, at which time data regarding outcomes were extracted from the records. In the preoperative setting, patients performed the 5-m walk and stand still for 30 s in the clinic while wearing a mobile phone with a customized app “Lockhart Monitor” available at iOS App Store. Systematic evaluations of different gait and posture measures identified a subset of smartphone measures most sensitive to differences in two groups (frail versus non-frail) with adverse postoperative outcomes (morbidity/mortality). A regression model based on these smartphone measures tested positive on five CVD patients. Thus, clinical settings can readily utilize mobile technology, and the proposed regression model can predict adverse postoperative outcomes such as morbidity or mortality events

    Low muscle strength and increased arterial stiffness go hand in hand

    Get PDF
    Low handgrip strength and increased arterial stiffness are both associated with poor health outcomes, but evidence on the relationship between handgrip strength and arterial stiffness is limited. In this cross-sectional analysis of combined baseline datasets from the LipidCardio and Berlin Aging Study II cohorts we aimed to examine whether handgrip strength (HGS) is associated with arterial stiffness. 1511 participants with a median age of 68.56 (IQR 63.13-73.08) years were included. Arterial stiffness was assessed by aortal pulse wave velocity (PWV) with the Mobil-O-Graph device. Handgrip strength was assessed with a handheld dynamometer.The mean HGS was 39.05 +/- 9.07 kg in men and 26.20 +/- 7.47 kg in women. According to multivariable linear regression analysis per 5 kg decrease in handgrip strength there was a mean increase in PWV of 0.08 m/s after adjustment for the confounders age, sex, coronary artery disease, systolic blood pressure, body mass index, cohort, and smoking. Thus, there was evidence that low handgrip strength and increased arterial stiffness go hand in hand. Arterial stiffness can possibly create the missing link between low handgrip strength and increased cardiovascular morbidity and mortality. Causality and direction of causality remain to be determined
    corecore