13,232 research outputs found

    A non-invasive approach to detect and monitor acute mental fatigue

    Get PDF
    In our day to day, we often experience a sense of being tired due to mental or physical workload. Along with that, there is also a feeling of degrading performance, even after the completion of simple tasks. These mental states however, are often not felt consciously or are ignored. This is an attitude that may result in human error, failure, and may lead to potential health problems together with a decrease in quality of life. States of acute mental fatigue may be detected with the close monitoring of certain indicators, such as productivity, performance and health indicators. In this paper, a model and prototype are proposed to detect and monitor acute acute fatigue, based on non-invasive Humancomputer Interaction (HCI). This approach will enable the development of better working environments, with an impact on the quality of life and the work producedThis work was developed in the context of the project CAMCoF - Contextaware Multimodal Communication Framework funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT - Funda ção para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-028980

    Analysis of human performance as a measure of mental fatigue

    Get PDF
    In our day to day, we often experience a sense of being tired due to mental or physical workload. Along with that, there is also a feeling of degrading performance, even after the completion of simple tasks. These mental states however, are often not felt consciously or are ignored. This is an attitude that may result in human error, failure, and may lead to potential health problems together with a decrease in quality of life. States of acute mental fatigue may be detected with the close monitoring of certain indicators, such as productivity, performance and health indicators. In this paper, a model and prototype are proposed to detect and monitor acute acute fatigue, based on non-invasive Humancomputer Interaction (HCI). This approach will enable the development of better working environments, with an impact on the quality of life and the work produced.This work was developed in the context of the project CAMCoF - Contextaware Multimodal Communication Framework funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT - Funda ção para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-028980

    Validity of telemetric-derived measures of heart rate variability: a systematic review

    Get PDF
    Heart rate variability (HRV) is a widely accepted indirect measure of autonomic function with widespread application across many settings. Although traditionally measured from the 'gold standard' criterion electrocardiography (ECG), the development of wireless telemetric heart rate monitors (HRMs) extends the scope of the HRV measurement. However, the validity of telemetric-derived data against the criterion ECG data is unclear. Thus, the purpose of this study was twofold: (a) to systematically review the validity of telemetric HRM devices to detect inter-beat intervals and aberrant beats; and (b) to determine the accuracy of HRV parameters computed from HRM-derived inter-beat interval time series data against criterion ECG-derived data in healthy adults aged 19 to 62 yrs. A systematic review of research evidence was conducted. Four electronic databases were accessed to obtain relevant articles (PubMed, EMBASE, MEDLINE and SPORTDiscus. Articles published in English between 1996 and 2016 were eligible for inclusion. Outcome measures included temporal and power spectral indices (Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). The review confirmed that modern HRMs (Polar® V800™ and Polar® RS800CX™) accurately detected inter-beat interval time-series data. The HRV parameters computed from the HRM-derived time series data were interchangeable with the ECG-derived data. The accuracy of the automatic in-built manufacturer error detection and the HRV algorithms were not established. Notwithstanding acknowledged limitations (a single reviewer, language bias, and the restricted selection of HRV parameters), we conclude that the modern Polar® HRMs offer a valid useful alternative to the ECG for the acquisition of inter-beat interval time series data, and the HRV parameters computed from Polar® HRM-derived inter-beat interval time series data accurately reflect ECG-derived HRV metrics, when inter-beat interval data are processed and analyzed using identical protocols, validated algorithms and software, particularly under controlled and stable conditions

    Wearable technology in the sports medicine clinic to guide the return-to-play and performance protocols of athletes following a COVID-19 diagnosis

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic has enabled the adoption of digital health platforms for self-monitoring and diagnosis. Notably, the pandemic has had profound effects on athletes and their ability to train and compete. Sporting organizations worldwide have reported a significant increase in injuries manifesting from changes in training regimens and match schedules resulting from extended quarantines. While current literature focuses on the use of wearable technology to monitor athlete workloads to guide training, there is a lack of literature suggesting how such technology can mediate the return to sport processes of athletes infected with COVID-19. This paper bridges this gap by providing recommendations to guide team physicians and athletic trainers on the utility of wearable technology for improving the well-being of athletes who may be asymptomatic, symptomatic, or tested negative but have had to quarantine due to a close exposure. We start by describing the physiologic changes that occur in athletes infected with COVID-19 with extended deconditioning from a musculoskeletal, psychological, cardiopulmonary, and thermoregulatory standpoint and review the evidence on how these athletes may safely return to play. We highlight opportunities for wearable technology to aid in the return-to-play process by offering a list of key parameters pertinent to the athlete affected by COVID-19. This paper provides the athletic community with a greater understanding of how wearable technology can be implemented in the rehabilitation process of these athletes and spurs opportunities for further innovations in wearables, digital health, and sports medicine to reduce injury burden in athletes of all ages. © The Author(s) 2023

    Protocolised non-invasive compared with invasive weaning from mechanical ventilation for adults in intensive care : the Breathe RCT

    Get PDF
    Background: Invasive mechanical ventilation (IMV) is a life-saving intervention. Following resolution of the condition that necessitated IMV, a spontaneous breathing trial (SBT) is used to determine patient readiness for IMV discontinuation. In patients who fail one or more SBTs, there is uncertainty as to the optimum management strategy. Objective: To evaluate the clinical effectiveness and cost-effectiveness of using non-invasive ventilation (NIV) as an intermediate step in the protocolised weaning of patients from IMV. Design: Pragmatic, open-label, parallel-group randomised controlled trial, with cost-effectiveness analysis. Setting: A total of 51 critical care units across the UK. Participants: Adult intensive care patients who had received IMV for at least 48 hours, who were categorised as ready to wean from ventilation, and who failed a SBT. Interventions: Control group (invasive weaning): patients continued to receive IMV with daily SBTs. A weaning protocol was used to wean pressure support based on the patient’s condition. Intervention group (non-invasive weaning): patients were extubated to NIV. A weaning protocol was used to wean inspiratory positive airway pressure, based on the patient’s condition. Main outcome measures: The primary outcome measure was time to liberation from ventilation. Secondary outcome measures included mortality, duration of IMV, proportion of patients receiving antibiotics for a presumed respiratory infection and health-related quality of life. Results: A total of 364 patients (invasive weaning, n = 182; non-invasive weaning, n = 182) were randomised. Groups were well matched at baseline. There was no difference between the invasive weaning and non-invasive weaning groups in median time to liberation from ventilation {invasive weaning 108 hours [interquartile range (IQR) 57–351 hours] vs. non-invasive weaning 104.3 hours [IQR 34.5–297 hours]; hazard ratio 1.1, 95% confidence interval [CI] 0.89 to 1.39; p = 0.352}. There was also no difference in mortality between groups at any time point. Patients in the non-invasive weaning group had fewer IMV days [invasive weaning 4 days (IQR 2–11 days) vs. non-invasive weaning 1 day (IQR 0–7 days); adjusted mean difference –3.1 days, 95% CI –5.75 to –0.51 days]. In addition, fewer non-invasive weaning patients required antibiotics for a respiratory infection [odds ratio (OR) 0.60, 95% CI 0.41 to 1.00; p = 0.048]. A higher proportion of non-invasive weaning patients required reintubation than those in the invasive weaning group (OR 2.00, 95% CI 1.27 to 3.24). The within-trial economic evaluation showed that NIV was associated with a lower net cost and a higher net effect, and was dominant in health economic terms. The probability that NIV was cost-effective was estimated at 0.58 at a cost-effectiveness threshold of £20,000 per quality-adjusted life-year. Conclusions: A protocolised non-invasive weaning strategy did not reduce time to liberation from ventilation. However, patients who underwent non-invasive weaning had fewer days requiring IMV and required fewer antibiotics for respiratory infections. Future work: In patients who fail a SBT, which factors predict an adverse outcome (reintubation, tracheostomy, death) if extubated and weaned using NIV? Trial registration: Current Controlled Trials ISRCTN15635197. Funding: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 23, No. 48. See the NIHR Journals Library website for further project information

    New methods for stress assessment and monitoring at the workplace

    Get PDF
    The topic of stress is nowadays a very important one, not only in research but on social life in general. People are increasingly aware of this problem and its consequences at several levels: health, social life, work, quality of life, etc. This resulted in a significant increase in the search for devices and applications to measure and manage stress in real-time. Recent technological and scientific evolution fosters this interest with the development of new methods and approaches. In this paper we survey these new methods for stress assessment, focusing especially on those that are suited for the workplace: one of today’s major sources of stress. We contrast them with more traditional methods and compare them between themselves, evaluating nine characteristics. Given the diversity of methods that exist nowadays, this work facilitates the stakeholders’ decision towards which one to use, based on how much their organization values aspects such as privacy, accuracy, cost-effectiveness or intrusivenes

    New methods for stress assessment and monitoring at the workplace

    Get PDF
    The topic of stress is nowadays a very important one, not only in research but on social life in general. People are increasingly aware of this problem and its consequences at several levels: health, social life, work, quality of life, etc. This resulted in a significant increase in the search for devices and applications to measure and manage stress in real-time. Recent technological and scientific evolution fosters this interest with the development of new methods and approaches. In this paper we survey these new methods for stress assessment, focusing especially on those that are suited for the workplace: one of today’s major sources of stress. We contrast them with more traditional methods and compare them between themselves, evaluating nine characteristics. Given the diversity of methods that exist nowadays, this work facilitates the stakeholders’ decision towards which one to use, based on how much their organization values aspects such as privacy, accuracy, cost-effectiveness or intrusivenes

    Practical approach on frail older patients attended for acute heart failure

    Get PDF
    Acute heart failure (AHF) is a multi-organ dysfunction syndrome. In addition to known cardiac dysfunction, non-cardiac comorbidity, frailty and disability are independent risk factors of mortality, morbidity, cognitive and functional decline, and risk of institutionalization. Frailty, a treatable and potential reversible syndrome very common in older patients with AHF, increases the risk of disability and other adverse health outcomes. This position paper highlights the need to identify frailty in order to improve prognosis, the risk-benefits of invasive diagnostic and therapeutic procedures, and the definition of older-person-centered and integrated care plans

    Monitoring Cognitive and Emotional Processes Through Pupil and Cardiac Response During Dynamic Versus Logical Task

    Get PDF
    The paper deals with the links between physiological measurements and cognitive and emotional functioning. As long as the operator is a key agent in charge of complex systems, the definition of metrics able to predict his performance is a great challenge. The measurement of the physiological state is a very promising way but a very acute comprehension is required; in particular few studies compare autonomous nervous system reactivity according to specific cognitive processes during task performance and task related psychological stress is often ignored. We compared physiological parameters recorded on 24 healthy subjects facing two neuropsychological tasks: a dynamic task that require problem solving in a world that continually evolves over time and a logical task representative of cognitive processes performed by operators facing everyday problem solving. Results showed that the mean pupil diameter change was higher during the dynamic task; conversely, the heart rate was more elevated during the logical task. Finally, the systolic blood pressure seemed to be strongly sensitive to psychological stress. A better taking into account of the precise influence of a given cognitive activity and both workload and related task-induced psychological stress during task performance is a promising way to better monitor operators in complex working situations to detect mental overload or pejorative stress factor of error
    corecore