1,147 research outputs found

    Improved dynamical particle swarm optimization method for structural dynamics

    Get PDF
    A methodology to the multiobjective structural design of buildings based on an improved particle swarm optimization algorithm is presented, which has proved to be very efficient and robust in nonlinear problems and when the optimization objectives are in conflict. In particular, the behaviour of the particle swarm optimization (PSO) classical algorithm is improved by dynamically adding autoadaptive mechanisms that enhance the exploration/exploitation trade-off and diversity of the proposed algorithm, avoiding getting trapped in local minima. A novel integrated optimization system was developed, called DI-PSO, to solve this problem which is able to control and even improve the structural behaviour under seismic excitations. In order to demonstrate the effectiveness of the proposed approach, the methodology is tested against some benchmark problems. Then a 3-story-building model is optimized under different objective cases, concluding that the improved multiobjective optimization methodology using DI-PSO is more efficient as compared with those designs obtained using single optimization.Peer ReviewedPostprint (published version

    Multi-Objective Self-Organizing Migrating Algorithm: Sensitivity on Controlling Parameters

    Get PDF
    In this paper, we investigate the sensitivity of a novel Multi-Objective Self-Organizing Migrating Algorithm (MOSOMA) on setting its control parameters. Usually, efficiency and accuracy of searching for a solution depends on the settings of a used stochastic algorithm, because multi-objective optimization problems are highly non-linear. In the paper, the sensitivity analysis is performed exploiting a large number of benchmark problems having different properties (the number of optimized parameters, the shape of a Pareto front, etc.). The quality of solutions revealed by MOSOMA is evaluated in terms of a generational distance, a spread and a hyper-volume error. Recommendations for proper settings of the algorithm are derived: These recommendations should help a user to set the algorithm for any multi-objective task without prior knowledge about the solved problem

    Comparison of Geometric Optimization Methods with Multiobjective Genetic Algorithms for Solving Integrated Optimal Design Problems

    Get PDF
    In this paper, system design methodologies for optimizing heterogenous power devices in electrical engineering are investigated. The concept of Integrated Optimal Design (IOD) is presented and a simplified but typical example is given. It consists in finding Pareto-optimal configurations for the motor drive of an electric vehicle. For that purpose, a geometric optimization method (i.e the Hooke and Jeeves minimization procedure) associated with an objective weighting sum and a Multiobjective Genetic Algorithm (i.e. the NSGA-II) are compared. Several performance issues are discussed such as the accuracy in the determination of Pareto-optimal configurations and the capability to well spread these solutions in the objective space

    Multiobjective optimization of electromagnetic structures based on self-organizing migration

    Get PDF
    PrĂĄce se zabĂœvĂĄ popisem novĂ©ho stochastickĂ©ho vĂ­cekriteriĂĄlnĂ­ho optimalizačnĂ­ho algoritmu MOSOMA (Multiobjective Self-Organizing Migrating Algorithm). Je zde ukĂĄzĂĄno, ĆŸe algoritmus je schopen ƙeĆĄit nejrĆŻznějĆĄĂ­ typy optimalizačnĂ­ch Ășloh (s jakĂœmkoli počtem kritĂ©riĂ­, s i bez omezujĂ­cĂ­ch podmĂ­nek, se spojitĂœm i diskrĂ©tnĂ­m stavovĂœm prostorem). VĂœsledky algoritmu jsou srovnĂĄny s dalĆĄĂ­mi bÄ›ĆŸně pouĆŸĂ­vanĂœmi metodami pro vĂ­cekriteriĂĄlnĂ­ optimalizaci na velkĂ© sadě testovacĂ­ch Ășloh. Uvedli jsme novou techniku pro vĂœpočet metriky rozprostƙenĂ­ (spread) zaloĆŸenĂ© na hledĂĄnĂ­ minimĂĄlnĂ­ kostry grafu (Minimum Spanning Tree) pro problĂ©my majĂ­cĂ­ vĂ­ce neĆŸ dvě kritĂ©ria. DoporučenĂ© hodnoty pro parametry ƙídĂ­cĂ­ běh algoritmu byly určeny na zĂĄkladě vĂœsledkĆŻ jejich citlivostnĂ­ analĂœzy. Algoritmus MOSOMA je dĂĄle Ășspěơně pouĆŸit pro ƙeĆĄenĂ­ rĆŻznĂœch nĂĄvrhovĂœch Ășloh z oblasti elektromagnetismu (nĂĄvrh Yagi-Uda antĂ©ny a dielektrickĂœch filtrĆŻ, adaptivnĂ­ ƙízenĂ­ vyzaƙovanĂ©ho svazku v časovĂ© oblasti
).This thesis describes a novel stochastic multi-objective optimization algorithm called MOSOMA (Multi-Objective Self-Organizing Migrating Algorithm). It is shown that MOSOMA is able to solve various types of multi-objective optimization problems (with any number of objectives, unconstrained or constrained problems, with continuous or discrete decision space). The efficiency of MOSOMA is compared with other commonly used optimization techniques on a large suite of test problems. The new procedure based on finding of minimum spanning tree for computing the spread metric for problems with more than two objectives is proposed. Recommended values of parameters controlling the run of MOSOMA are derived according to their sensitivity analysis. The ability of MOSOMA to solve real-life problems from electromagnetics is shown in a few examples (Yagi-Uda and dielectric filters design, adaptive beam forming in time domain
).

    A competitive mechanism based multi-objective particle swarm optimizer with fast convergence

    Get PDF
    In the past two decades, multi-objective optimization has attracted increasing interests in the evolutionary computation community, and a variety of multi-objective optimization algorithms have been proposed on the basis of different population based meta-heuristics, where the family of multi-objective particle swarm optimization is among the most representative ones. While the performance of most existing multi-objective particle swarm optimization algorithms largely depends on the global or personal best particles stored in an external archive, in this paper, we propose a competitive mechanism based multi-objective particle swarm optimizer, where the particles are updated on the basis of the pairwise competitions performed in the current swarm at each generation. The performance of the proposed competitive multi-objective particle swarm optimizer is verified by benchmark comparisons with several state-of-the-art multiobjective optimizers, including three multi-objective particle swarm optimization algorithms and three multi-objective evolutionary algorithms. Experimental results demonstrate the promising performance of the proposed algorithm in terms of both optimization quality and convergence speed

    A particle swarm optimizer for multi-objective optimization

    Get PDF
    This paper proposes a hybrid particle swarm approach called Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist policy, and two techniques to maintain diversity: a mutation operator and a grid which is used as a geographical location over objective function space. In order to validate our approach we use three well-known test functions proposed in the specialized literature. Preliminary simulations results are presented and compared with those obtained with the Pareto Archived Evolution Strategy (PAES) and the Multi-Objective Genetic Algorithm 2 (MOGA2). These results also show that the SMOPSO algorithm is a promising alternative to tackle multiobjective optimization problems.Facultad de InformĂĄtic

    A Gradient Multiobjective Particle Swarm Optimization

    Get PDF
    An adaptive gradient multiobjective particle swarm optimization (AGMOPSO) algorithm, based on a multiobjective gradient (MOG) method, is developed to improve the computation performance. In this AGMOPSO algorithm, the MOG method is devised to update the archive to improve the convergence speed and the local exploitation in the evolutionary process. Attributed to the MOG method, this AGMOPSO algorithm not only has faster convergence speed and higher accuracy but also its solutions have better diversity. Additionally, the convergence is discussed to confirm the prerequisite of any successful application of AGMOPSO. Finally, with regard to the computation performance, the proposed AGMOPSO algorithm is compared with some other multiobjective particle swarm optimization (MOPSO) algorithms and two state-of-the-art multiobjective algorithms. The results demonstrate that the proposed AGMOPSO algorithm can find better spread of solutions and have faster convergence to the true Pareto-optimal front

    Using Optimality Theory and Reference Points to Improve the Diversity and Convergence of a Fuzzy-Adaptive Multi-Objective Particle Swarm Optimizer

    Get PDF
    Particle Swarm Optimization (PSO) has received increasing attention from the evolutionary optimization research community in the last twenty years. PSO is a metaheuristic approach based on collective intelligence obtained by emulating the swarming behavior of bees. A number of multi-objective variants of the original PSO algorithm that extend its applicability to optimization problems with conflicting objectives have also been developed; these multi-objective PSO (MOPSO) algorithms demonstrate comparable performance to other state-of-the-art metaheuristics. The existence of multiple optimal solutions (Pareto-optimal set) in optimization problems with conflicting objectives is not the only challenge posed to an optimizer, as the latter needs to be able to identify and preserve a well-distributed set of solutions during the search of the decision variable space. Recent attempts by evolutionary optimization researchers to incorporate mathematical convergence conditions into genetic algorithm optimizers have led to the derivation of a point-wise proximity measure, which is based on the solution of the achievement scalarizing function (ASF) optimization problem with a complementary slackness condition that quantifies the violation of the Karush-Kuhn-Tucker necessary conditions of optimality. In this work, the aforementioned KKT proximity measure is incorporated into the original Adaptive Coevolutionary Multi-Objective Swarm Optimizer (ACMOPSO) in order to monitor the convergence of the sub-swarms towards the Pareto-optimal front and provide feedback to Mamdani-type fuzzy logic controllers (FLCs) that are utilized for online adaptation of the algorithmic parameters. The proposed Fuzzy-Adaptive Multi-Objective Optimization Algorithm with the KKT proximity measure (FAMOPSOkkt) utilizes a set of reference points to cluster the computed nondominated solutions. These clusters interact with their corresponding sub-swarms to provide the swarm leaders and are also utilized to manage the external archive of nondominated solutions. The performance of the proposed algorithm is evaluated on benchmark problems chosen from the multi-objective optimization literature and compared to the performance of state-of-the-art multi-objective optimization algorithms with similar features

    Application of a new multi-agent Hybrid Co-evolution based Particle Swarm Optimisation methodology in ship design

    Get PDF
    In this paper, a multiple objective 'Hybrid Co-evolution based Particle Swarm Optimisation' methodology (HCPSO) is proposed. This methodology is able to handle multiple objective optimisation problems in the area of ship design, where the simultaneous optimisation of several conflicting objectives is considered. The proposed method is a hybrid technique that merges the features of co-evolution and Nash equilibrium with a Δ-disturbance technique to eliminate the stagnation. The method also offers a way to identify an efficient set of Pareto (conflicting) designs and to select a preferred solution amongst these designs. The combination of co-evolution approach and Nash-optima contributes to HCPSO by utilising faster search and evolution characteristics. The design search is performed within a multi-agent design framework to facilitate distributed synchronous cooperation. The most widely used test functions from the formal literature of multiple objectives optimisation are utilised to test the HCPSO. In addition, a real case study, the internal subdivision problem of a ROPAX vessel, is provided to exemplify the applicability of the developed method
    • 

    corecore