1,248 research outputs found

    Research Trends and Outlooks in Assembly Line Balancing Problems

    Get PDF
    This paper presents the findings from the survey of articles published on the assembly line balancing problems (ALBPs) during 2014-2018. Before proceeding a comprehensive literature review, the ineffectiveness of the previous ALBP classification structures is discussed and a new classification scheme based on the layout configurations of assembly lines is subsequently proposed. The research trend in each layout of assembly lines is highlighted through the graphical presentations. The challenges in the ALBPs are also pinpointed as a technical guideline for future research works

    Multi-objective discrete particle swarm optimisation algorithm for integrated assembly sequence planning and assembly line balancing

    Get PDF
    In assembly optimisation, assembly sequence planning and assembly line balancing have been extensively studied because both activities are directly linked with assembly efficiency that influences the final assembly costs. Both activities are categorised as NP-hard and usually performed separately. Assembly sequence planning and assembly line balancing optimisation presents a good opportunity to be integrated, considering the benefits such as larger search space that leads to better solution quality, reduces error rate in planning and speeds up time-to-market for a product. In order to optimise an integrated assembly sequence planning and assembly line balancing, this work proposes a multi-objective discrete particle swarm optimisation algorithm that used discrete procedures to update its position and velocity in finding Pareto optimal solution. A computational experiment with 51 test problems at different difficulty levels was used to test the multi-objective discrete particle swarm optimisation performance compared with the existing algorithms. A statistical test of the algorithm performance indicates that the proposed multi-objective discrete particle swarm optimisation algorithm presents significant improvement in terms of the quality of the solution set towards the Pareto optimal set

    Multi-Objective Discrete Particle Swarm Optimisation Algorithm for Integrated Assembly Sequence Planning and Assembly Line Balancing

    Get PDF
    In assembly optimisation, assembly sequence planning and assembly line balancing have been extensively studied because both activities are directly linked with assembly efficiency that influences the final assembly costs. Both activities are categorised as NP-hard and usually performed separately. Assembly sequence planning and assembly line balancing optimisation presents a good opportunity to be integrated, considering the benefits such as larger search space that leads to better solution quality, reduces error rate in planning and speeds up time-to-market for a product. In order to optimise an integrated assembly sequence planning and assembly line balancing, this work proposes a multi-objective discrete particle swarm optimisation algorithm that used discrete procedures to update its position and velocity in finding Pareto optimal solution. A computational experiment with 51 test problems at different difficulty levels was used to test the multi-objective discrete particle swarm optimisation performance compared with the existing algorithms. A statistical test of the algorithm performance indicates that the proposed multi-objective discrete particle swarm optimisation algorithm presents significant improvement in terms of the quality of the solution set towards the Pareto optimal set

    Assembly line balancing with cobots: An extensive review and critiques

    Get PDF
    Industry 4.0 encourages industries to digitise the manufacturing system to facilitate human-robot collaboration (HRC) to foster efficiency, agility and resilience. This cutting-edge technology strikes a balance between fully automated and manual operations to maximise the benefits of both humans and assistant robots (known as cobots) working together on complicated and prone-to-hazardous tasks in a collaborative manner in an assembly system. However, the introduction of HRC poses a significant challenge for assembly line balancing since, besides typical assigning tasks to workstations, the other two important decisions must also be made regarding equipping workstations with appropriate cobots as well as scheduling collaborative tasks for workers and cobots. In this article, the cobot assembly line balancing problem (CoALBP), which just initially emerged a few years ago, is thoroughly reviewed. The 4M1E (i.e., man, machine, material, method and environment) framework is applied for categorising the problem to make the review process more effective. All of the articles reviewed are compared, and their key distinct features are summarised. Finally, guidelines for additional studies on the CoALBP are offered

    āļāļēāļĢāļˆāļąāļ”āļŠāļĄāļ”āļļāļĨāļ—āļĩāđˆāļĄāļĩāļŦāļĨāļēāļĒāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļšāļ™āļŠāļēāļĒāļāļēāļĢāļ›āļĢāļ°āļāļ­āļšāđāļšāļšāļ‚āļ™āļēāļ™āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļœāļŠāļĄāļ”āđ‰āļ§āļĒāļāļēāļĢāļŦāļēāļ„āđˆāļēāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ—āļĩāđˆāļŠāļļāļ”āđāļšāļšāļāļēāļĢāļāļĢāļ°āļˆāļēāļĒāļ•āļąāļ§āļ‚āļ­āļ‡āļŠāļīāđˆāļ‡āļĄāļĩāļŠāļĩāļ§āļīāļ•āļ•āļēāļĄāļ āļđāļĄāļīāļĻāļēāļŠāļ•āļĢāđŒ

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­āļāļēāļĢāļŦāļēāļ„āđˆāļēāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ—āļĩāđˆāļŠāļļāļ”āđāļšāļšāļāļēāļĢāļāļĢāļ°āļˆāļēāļĒāļ•āļąāļ§āļ‚āļ­āļ‡āļŠāļīāđˆāļ‡āļĄāļĩāļŠāļĩāļ§āļīāļ•āļ•āļēāļĄāļ āļđāļĄāļīāļĻāļēāļŠāļ•āļĢāđŒ (Biogeography-based Optimization:BBO) āđ€āļ›āđ‡āļ™āđ€āļĄāļ•āļēāļŪāļīāļ§āļĢāļīāļŠāļ•āļīāļāđ€āļŠāļīāļ‡āļ§āļīāļ§āļąāļ’āļ™āļēāļāļēāļĢāļ—āļĩāđˆāđ„āļ”āđ‰āļĢāļąāļšāđāļ™āļ§āļ„āļīāļ”āļĄāļēāļˆāļēāļāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļāļēāļĢāļ­āļžāļĒāļžāļ‚āļ­āļ‡āļŠāļīāđˆāļ‡āļĄāļĩāļŠāļĩāļ§āļīāļ•āļšāļ™āđ€āļāļēāļ°āļ•āđˆāļēāļ‡āđ†āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āļ™āļģāđ€āļŠāļ™āļ­āļ­āļąāļĨāļāļ­āļĢāļīāļ—āļķāļĄ BBO āđ€āļžāļ·āđˆāļ­āđƒāļŠāđ‰āļŠāļģāļŦāļĢāļąāļšāđāļāđ‰āļ›āļąāļāļŦāļēāļāļēāļĢāļˆāļąāļ”āļŠāļĄāļ”āļļāļĨāļ—āļĩāđˆāļĄāļĩāļŦāļĨāļēāļĒāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļšāļ™āļŠāļēāļĒāļāļēāļĢāļ›āļĢāļ°āļāļ­āļšāđāļšāļšāļ‚āļ™āļēāļ™āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļœāļŠāļĄ āđ‚āļ”āļĒāļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļˆāļģāļ™āļ§āļ™āļ—āļąāđ‰āļ‡āļŠāļīāđ‰āļ™ 4 āļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļ—āļĩāđˆāļˆāļ°āļ–āļđāļāļ—āļģāđƒāļŦāđ‰āđ€āļŦāļĄāļēāļ°āļŠāļĄāļ—āļĩāđˆāļŠāļļāļ”āđ„āļ›āļžāļĢāđ‰āļ­āļĄāđ† āļāļąāļ™ āđ„āļ”āđ‰āđāļāđˆāļˆāļģāļ™āļ§āļ™āļŠāļ–āļēāļ™āļĩāļ‡āļēāļ™āļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ” āļˆāļģāļ™āļ§āļ™āļŠāļ–āļēāļ™āļĩāļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ” āļ„āļ§āļēāļĄāļŠāļĄāļ”āļļāļĨāļ‚āļ­āļ‡āļ āļēāļĢāļ°āļ‡āļēāļ™āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļŠāļ–āļēāļ™āļĩāļ‡āļēāļ™āļŠāļđāļ‡āļ—āļĩāđˆāļŠāļļāļ” āđāļĨāļ°āļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļ‚āļ­āļ‡āļ‡āļēāļ™āļŠāļđāļ‡āļ—āļĩāđˆāļŠāļļāļ” āļœāļĨāļˆāļēāļāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ­āļĒāđˆāļēāļ‡āļŠāļąāļ”āđ€āļˆāļ™āļ§āđˆāļē BBO āļĄāļĩāļŠāļĄāļĢāļĢāļ–āļ™āļ°āđƒāļ™āļāļēāļĢāđāļāđ‰āļ›āļąāļāļŦāļēāļ—āļĩāđˆāļŠāļđāļ‡āļāļ§āđˆāļēāļ­āļąāļĨāļāļ­āļĢāļīāļ—āļķāļĄāđ€āļŠāļīāļ‡āļžāļąāļ™āļ˜āļļāļāļĢāļĢāļĄāđāļšāļšāļāļēāļĢāļˆāļąāļ”āļĨāļģāļ”āļąāļšāļ—āļĩāđˆāđ„āļĄāđˆāļ–āļđāļāļ„āļĢāļ­āļšāļ‡āļģ II (Non-dominated Sorting Genetic Algorithm II: NSGA-II) āļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āļ­āļĩāļāļ­āļąāļĨāļāļ­āļĢāļīāļ—āļķāļĄāļŦāļ™āļķāđˆāļ‡āļ—āļĩāđˆāđ€āļ›āđ‡āļ™āļ—āļĩāđˆāļ™āļīāļĒāļĄ āļ—āļąāđ‰āļ‡āđƒāļ™āļ”āđ‰āļēāļ™āļāļēāļĢāļĨāļđāđˆāđ€āļ‚āđ‰āļēāļŠāļđāđˆāļāļĨāļļāđˆāļĄāļ„āļģāļ•āļ­āļšāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ—āļĩāđˆāļŠāļļāļ”āđāļšāļšāļžāļēāđ€āļĢāđ‚āļ• āļāļēāļĢāļāļĢāļ°āļˆāļēāļĒāļ•āļąāļ§āļ‚āļ­āļ‡āļāļĨāļļāđˆāļĄāļ„āļģāļ•āļ­āļš āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ‚āļ­āļ‡āļ„āļģāļ•āļ­āļšāļ—āļĩāđˆāđ„āļĄāđˆāļ–āļđāļāļ„āļĢāļ­āļšāļ‡āļģāđāļĨāļ°āđ€āļ§āļĨāļēāļ—āļĩāđˆāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļ„āļģāļ™āļ§āļ“āļŦāļēāļ„āļģāļ•āļ­āļšāļ„āļģāļŠāļģāļ„āļąāļ: āļŠāļēāļĒāļāļēāļĢāļ›āļĢāļ°āļāļ­āļšāđāļšāļšāļ‚āļ™āļēāļ™āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļœāļŠāļĄ āļāļēāļĢāļˆāļąāļ”āļŠāļĄāļ”āļļāļĨāļŦāļĨāļēāļĒāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļāļēāļĢāļŦāļēāļ„āđˆāļēāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ—āļĩāđˆāļŠāļļāļ” āđāļšāļšāļāļēāļĢāļāļĢāļ°āļˆāļēāļĒāļ•āļąāļ§āļ‚āļ­āļ‡āļŠāļīāđˆāļ‡āļĄāļĩāļŠāļĩāļ§āļīāļ•āļ•āļēāļĄāļ āļđāļĄāļīāļĻāļēāļŠāļ•āļĢāđŒAbstractBiogeography-based Optimization (BBO) is an evolutionary metaheuristic inspired by migratory behavior of species among islands. This article presents a BBO algorithm for solving multi-objective mixed-model parallel assembly line balancing problem where four objectives are optimized simultaneously; i.e. to minimize the number of workstations, to minimize the number of stations, a maximization of workload balancing between workstations, and placing an emphasis on maximizing work relatedness. The results from experiments clearly show that BBO promises better performance than does Non-dominated Sorting Genetic Algorithm II (NSGA-II), which indicates another well-known algorithm, in terms of convergence to the Pareto-optimal set, spread of solutions, ratio of non-dominated solutions, and computation time to solution.Keywords: Mixed-model Parallel Assembly Lines, Multi-objective Line Balancing, Biogeography-based Optimizatio

    āļāļēāļĢāļˆāļąāļ”āļĨāļģāļ”āļąāļšāļāļēāļĢāļœāļĨāļīāļ•āļĢāļ–āļĒāļ™āļ•āđŒāđāļšāļšāļŦāļĨāļēāļĒāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļšāļ™āļŠāļēāļĒāļāļēāļĢāļ›āļĢāļ°āļāļ­āļšāļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļœāļŠāļĄāđāļšāļšāļŠāļ­āļ‡āļ”āđ‰āļēāļ™

    Get PDF
    āļāļēāļĢāļˆāļąāļ”āļĨāļģāļ”āļąāļšāļāļēāļĢāļœāļĨāļīāļ•āļĢāļ–āļĒāļ™āļ•āđŒāļšāļ™āļŠāļēāļĒāļāļēāļĢāļ›āļĢāļ°āļāļ­āļšāđāļšāļšāļŠāļ­āļ‡āļ”āđ‰āļēāļ™āļĄāļĩāļ„āļ§āļēāļĄāļŠāļģāļ„āļąāļāļ­āļĒāđˆāļēāļ‡āļĒāļīāđˆāļ‡āļŠāļģāļŦāļĢāļąāļšāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāđāļāđ‰āļ›āļąāļāļŦāļēāļŠāļēāļĒāļāļēāļĢāļ›āļĢāļ°āļāļ­āļšāļ—āļĩāđˆāļĄāļĩāļŦāļĨāļēāļĒāļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāđƒāļŦāđ‰āđ€āļāļīāļ”āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļŠāļđāļ‡āļŠāļļāļ” āļ‹āļķāđˆāļ‡āļ›āļąāļāļŦāļēāļŠāļ™āļīāļ”āļ™āļĩāđ‰āļĄāļĩāļ„āļ§āļēāļĄāļĒāļļāđˆāļ‡āļĒāļēāļāđāļĨāļ°āļŠāļĨāļąāļšāļ‹āļąāļšāļ‹āđ‰āļ­āļ™ āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāđ€āļ›āđ‡āļ™āļ›āļąāļāļŦāļēāđāļšāļš Non-deterministic Polynomial Hard: NP-Hard āđ‚āļ”āļĒāļ›āļąāļāļŦāļēāļāļēāļĢāļˆāļąāļ”āļĨāļģāļ”āļąāļšāļāļēāļĢāļœāļĨāļīāļ•āļĢāļ–āļĒāļ™āļ•āđŒāđāļšāļšāļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļœāļŠāļĄāļšāļ™āļŠāļēāļĒāļāļēāļĢāļ›āļĢāļ°āļāļ­āļšāđāļšāļšāļŠāļ­āļ‡āļ”āđ‰āļēāļ™āļ™āļĩāđ‰ āđ„āļ”āđ‰āļžāļīāļˆāļēāļĢāļ“āļēāļŸāļąāļ‡āļāđŒāļŠāļąāļ™āļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒ 3 āļŸāļąāļ‡āļāđŒāļŠāļąāļ™āđƒāļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ„āļ·āļ­ āļ›āļĢāļīāļĄāļēāļ“āļ‡āļēāļ™āļ—āļĩāđˆāļ—āļģāđ„āļĄāđˆāđ€āļŠāļĢāđ‡āļˆāļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ”āļˆāļģāļ™āļ§āļ™āļĢāļ–āļĒāļ™āļ•āđŒāļ—āļĩāđˆāļĨāļ°āđ€āļĄāļīāļ”āļĢāļ§āļĄāļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ” āđāļĨāļ°āļˆāļģāļ™āļ§āļ™āļ„āļĢāļąāđ‰āļ‡āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļŠāļĩāļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ” āđāļĨāļ°āļ™āļģāđ€āļŠāļ™āļ­āļ­āļąāļĨāļāļ­āļĢāļīāļ—āļķāļĄāļāļēāļĢāļšāļĢāļĢāļˆāļ§āļšāđāļšāļšāļ‚āļĒāļēāļĒ (Combinatorial Optimization with Coincidence Expand: COIN-E) āļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āļ­āļąāļĨāļāļ­āļĢāļīāļ—āļķāļĄāļ—āļĩāđˆāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāļĄāļēāļˆāļēāļ COIN āļĄāļēāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāđāļāđ‰āļ›āļąāļāļŦāļē āđ‚āļ”āļĒāļ—āļģāļāļēāļĢāđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļāļąāļšāļ­āļąāļĨāļāļ­āļĢāļīāļ—āļķāļĄāļ—āļĩāđˆāļĒāļ­āļĄāļĢāļąāļšāđƒāļ™āļāļēāļĢāđāļāđ‰āļ›āļąāļāļŦāļēāļāļēāļĢāļˆāļąāļ”āļĨāļģāļ”āļąāļšāļāļēāļĢāļœāļĨāļīāļ• āđ„āļ”āđ‰āđāļāđˆ NSGA-II, DPSO, BBO āđāļĨāļ° COIN āļœāļĨāļˆāļēāļāļāļēāļĢāđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļžāļšāļ§āđˆāļē COIN-E āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ”āđ‰āļēāļ™āļāļēāļĢāļĨāļđāđˆāđ€āļ‚āđ‰āļēāļŠāļđāđˆāļāļĨāļļāđˆāļĄāļ„āļģāļ•āļ­āļš āļ”āđ‰āļēāļ™āļāļēāļĢāļāļĢāļ°āļˆāļēāļĒāļāļĨāļļāđˆāļĄāļ„āļģāļ•āļ­āļšāđāļĨāļ°āļ”āđ‰āļēāļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ‚āļ­āļ‡āļˆāļģāļ™āļ§āļ™āļāļĨāļļāđˆāļĄāļ„āļģāļ•āļ­āļšāļ—āļĩāđˆāļ„āđ‰āļ™āļžāļšāđ€āļ—āļĩāļĒāļšāļāļąāļšāļāļĨāļļāđˆāļĄāļ„āļģāļ•āļ­āļšāļ—āļĩāđˆāđāļ—āđ‰āļˆāļĢāļīāļ‡āđ€āļ—āđˆāļēāļāļąāļš 91.85, 51.08 āđāļĨāļ° 57.48 āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļ‹āļķāđˆāļ‡āļˆāļēāļāļ•āļąāļ§āļŠāļĩāđ‰āļ§āļąāļ”āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļ‚āļ­āļ‡āļ—āļąāđ‰āļ‡ 3 āļŠāļ™āļīāļ”āļˆāļ°āļžāļšāļ§āđˆāļē COIN-E āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđƒāļ™āļāļēāļĢāđƒāļŠāđ‰āļāļēāļĢāđāļāđ‰āļ›āļąāļāļŦāļēāđ„āļ”āđ‰āļ”āļĩāļāļ§āđˆāļē NSGAII, DPSO, BBO āđāļĨāļ° COINāļ„āļģāļŠāļģāļ„āļąāļ: āļ­āļąāļĨāļāļ­āļĢāļīāļ—āļķāļĄāļāļēāļĢāļšāļĢāļĢāļˆāļ§āļšāđāļšāļšāļ‚āļĒāļēāļĒ āļāļēāļĢāļˆāļąāļ”āļĨāļģāļ”āļąāļšāļāļēāļĢāļœāļĨāļīāļ•āļĢāļ–āļĒāļ™āļ•āđŒāļšāļ™āļŠāļēāļĒāļāļēāļĢāļ›āļĢāļ°āļāļ­āļš āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļœāļŠāļĄāđāļšāļšāļŠāļ­āļ‡āļ”āđ‰āļēāļ™Car Sequencing on two-sided assembly line is an important problem in an automotive industry. Researchers and practitioners have attempted several approaches to solve this problem aiming at maximum production efficiency. The problem is considered as an “NP-Hard problem”. In this paper, three objective functions are considered including 1) minimizing utility work, 2) reducing the number of violation and 3) decreasing the number of color changes. The expansion of Combinatorial Optimization with Coincidence (COIN-E) algorithm is developed from its original version (i.e. COIN). Several well-known algorithms are compared in solving this problem including Non-dominated Sorting Genetic Algorithms (NSGA-II), Discrete Particle Swarm Optimization (DPSO), Biogeography-based Optimization (BBO) and (COIN). The experimental results indicate that COIN-E is efficient and it obtains the values of convergence = 91.85%, spread = 51.08% and ratio = 57.48%, which are significantly superior to NSGA-II, DPSO, BBO and COIN.Keywords: Expanded Combinatorial Optimization with Coincidence, Car Sequencing, Mixed-model Two-sided Assembly Line

    Energy Efficient Policies, Scheduling, and Design for Sustainable Manufacturing Systems

    Get PDF
    Climate mitigation, more stringent regulations, rising energy costs, and sustainable manufacturing are pushing researchers to focus on energy efficiency, energy flexibility, and implementation of renewable energy sources in manufacturing systems. This thesis aims to analyze the main works proposed regarding these hot topics, and to fill the gaps in the literature. First, a detailed literature review is proposed. Works regarding energy efficiency in different manufacturing levels, in the assembly line, energy saving policies, and the implementation of renewable energy sources are analyzed. Then, trying to fill the gaps in the literature, different topics are analyzed more in depth. In the single machine context, a mathematical model aiming to align the manufacturing power required to a renewable energy supply in order to obtain the maximum profit is developed. The model is applied to a single work center powered by the electric grid and by a photovoltaic system; afterwards, energy storage is also added to the power system. Analyzing the job shop context, switch off policies implementing workload approach and scheduling considering variable speed of the machines and power constraints are proposed. The direct and indirect workloads of the machines are considered to support the switch on/off decisions. A simulation model is developed to test the proposed policies compared to others presented in the literature. Regarding the job shop scheduling, a fixed and variable power constraints are considered, assuming the minimization of the makespan as the objective function. Studying the factory level, a mathematical model to design a flow line considering the possibility of using switch-off policies is developed. The design model for production lines includes a targeted imbalance among the workstations to allow for defined idle time. Finally, the main findings, results, and the future directions and challenges are presented

    Solving no-wait two-stage flexible flow shop scheduling problem with unrelated parallel machines and rework time by the adjusted discrete Multi Objective Invasive Weed Optimization and fuzzy dominance approach

    Get PDF
    Purpose: Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage flexible flow shop scheduling problem. Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times and probable rework in both stations, different ready times for all jobs and rework times for both stations as well as unrelated parallel machines with regards to the simultaneous minimization of maximum job completion time and average latency functions have been investigated in a multi-objective manner. In this study, the parameter setting has been carried out using Taguchi Method based on the quality indicator for beater performance of the algorithm. Findings: The results of this algorithm have been compared with those of conventional, multi-objective algorithms to show the better performance of the proposed algorithm. The results clearly indicated the greater performance of the proposed algorithm. Originality/value: This study provides an efficient method for solving multi objective no-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times, probable rework in both stations, different ready times for all jobs, rework times for both stations and unrelated parallel machines which are the real constraints.Peer Reviewe

    Optimised configuration of sensing elements for control and fault tolerance applied to an electro-magnetic suspension system

    Get PDF
    New technological advances and the requirements to increasingly abide by new safety laws in engineering design projects highly affects industrial products in areas such as automotive, aerospace and railway industries. The necessity arises to design reduced-cost hi-tech products with minimal complexity, optimal performance, effective parameter robustness properties, and high reliability with fault tolerance. In this context the control system design plays an important role and the impact is crucial relative to the level of cost efficiency of a product. Measurement of required information for the operation of the design control system in any product is a vital issue, and in such cases a number of sensors can be available to select from in order to achieve the desired system properties. However, for a complex engineering system a manual procedure to select the best sensor set subject to the desired system properties can be very complicated, time consuming or even impossible to achieve. This is more evident in the case of large number of sensors and the requirement to comply with optimum performance. The thesis describes a comprehensive study of sensor selection for control and fault tolerance with the particular application of an ElectroMagnetic Levitation system (being an unstable, nonlinear, safety-critical system with non-trivial control performance requirements). The particular aim of the presented work is to identify effective sensor selection frameworks subject to given system properties for controlling (with a level of fault tolerance) the MagLev suspension system. A particular objective of the work is to identify the minimum possible sensors that can be used to cover multiple sensor faults, while maintaining optimum performance with the remaining sensors. The tools employed combine modern control strategies and multiobjective constraint optimisation (for tuning purposes) methods. An important part of the work is the design and construction of a 25kg MagLev suspension to be used for experimental verification of the proposed sensor selection frameworks
    • â€Ķ
    corecore