250 research outputs found

    A Non-blocking Buddy System for Scalable Memory Allocation on Multi-core Machines

    Get PDF
    Common implementations of core memory allocation components handle concurrent allocation/release requests by synchronizing threads via spin-locks. This approach is not prone to scale with large thread counts, a problem that has been addressed in the literature by introducing layered allocation services or replicating the core allocators - the bottom most ones within the layered architecture. Both these solutions tend to reduce the pressure of actual concurrent accesses to each individual core allocator. In this article we explore an alternative approach to scalability of memory allocation/release, which can be still combined with those literature proposals. We present a fully non-blocking buddy-system, that allows threads to proceed in parallel, and commit their allocations/releases unless a conflict is materialized while handling its metadata. Beyond improving scalability and performance it is resilient to performance degradation in face of concurrent accesses independently of the current level of fragmentation of the handled memory blocks

    A Non-blocking Buddy System for Scalable Memory Allocation on Multi-core Machines

    Get PDF
    Common implementations of core memory allocation components, like the Linux buddy system, handle concurrent allocation/release requests by synchronizing threads via spin-locks. This approach is clearly not prone to scale with large thread counts, a problem that has been addressed in the literature by introducing layered allocation services or replicating the core allocators-the bottom most ones within the layered architecture. Both these solutions tend to reduce the pressure of actual concurrent accesses to each individual core allocator. In this article we explore an alternative approach to scalability of memory allocation/release, which can be still combined with those literature proposals. Conflict detection relies on conventional atomic machine instructions in the Read-Modify-Write (RMW) class. Furthermore, beyond improving scalability and performance, it can also avoid wasting clock cycles for spin-lock operations by threads that could in principle carry out their memory allocation/release in full concurrency. Thus, it is resilient to performance degradation---in face of concurrent accesses---independently of the current level of fragmentation of the handled memory blocks

    NBBS: A Non-blocking Buddy System for Multi-core Machines

    Get PDF
    Common implementations of core memory allocation components, like the Linux buddy system, handle concurrent allocation/release requests by synchronizing threads via spinlocks. This approach is not prone to scale with large thread counts, a problem that has been addressed in the literature by introducing layered allocation services or replicating the core allocators—the bottom most ones within the layered architecture. Both these solutions tend to reduce the pressure of actual concurrent accesses to each individual core allocator. In this article we explore an alternative approach to scalability of memory allocation/release, which can be still combined with those literature proposals. We present a fully non-blocking buddy-system, where threads performing concurrent allocations/releases do not undergo any spinlock based synchronization. Our solution allows threads to proceed in parallel, and commit their allocations/releases unless a conflict is materialized while handling its metadata. Conflict detection relies on conventional atomic machine instructions in the Read-Modify-Write (RMW) class. Beyond improving scalability and performance, our solution can also avoid wasting clock cycles for spin-lock operations by threads that could in principle carry out their memory allocation/release in full concurrency. Thus, it is resilient to performance degradation—in face of concurrent accesses—independently of the current level of fragmentation of the handled memory blocks

    EbbRT: a customizable operating system for cloud applications

    Full text link
    Efficient use of hardware requires operating system components be customized to the application workload. Our general purpose operating systems are ill-suited for this task. We present Genesis, a new operating system that enables per-application customizations for cloud applications. Genesis achieves this through a novel heterogeneous distributed structure, a partitioned object model, and an event-driven execution environment. This paper describes the design and prototype implementation of Genesis, and evaluates its ability to improve the performance of common cloud applications. The evaluation of the Genesis prototype demonstrates memcached, run within a VM, can outperform memcached run on an unvirtualized Linux. The prototype evaluation also demonstrates an 14% performance improvement of a V8 JavaScript engine benchmark, and a node.js webserver that achieves a 50% reduction in 99th percentile latency compared to it run on Linux

    Microgrid - The microthreaded many-core architecture

    Full text link
    Traditional processors use the von Neumann execution model, some other processors in the past have used the dataflow execution model. A combination of von Neuman model and dataflow model is also tried in the past and the resultant model is referred as hybrid dataflow execution model. We describe a hybrid dataflow model known as the microthreading. It provides constructs for creation, synchronization and communication between threads in an intermediate language. The microthreading model is an abstract programming and machine model for many-core architecture. A particular instance of this model is named as the microthreaded architecture or the Microgrid. This architecture implements all the concurrency constructs of the microthreading model in the hardware with the management of these constructs in the hardware.Comment: 30 pages, 16 figure

    EbbRT: a framework for building per-application library operating systems

    Full text link
    Efficient use of high speed hardware requires operating system components be customized to the application work- load. Our general purpose operating systems are ill-suited for this task. We present EbbRT, a framework for constructing per-application library operating systems for cloud applications. The primary objective of EbbRT is to enable high-performance in a tractable and maintainable fashion. This paper describes the design and implementation of EbbRT, and evaluates its ability to improve the performance of common cloud applications. The evaluation of the EbbRT prototype demonstrates memcached, run within a VM, can outperform memcached run on an unvirtualized Linux. The prototype evaluation also demonstrates an 14% performance improvement of a V8 JavaScript engine benchmark, and a node.js webserver that achieves a 50% reduction in 99th percentile latency compared to it run on Linux

    Extensions of Task-based Runtime for High Performance Dense Linear Algebra Applications

    Get PDF
    On the road to exascale computing, the gap between hardware peak performance and application performance is increasing as system scale, chip density and inherent complexity of modern supercomputers are expanding. Even if we put aside the difficulty to express algorithmic parallelism and to efficiently execute applications at large scale, other open questions remain. The ever-growing scale of modern supercomputers induces a fast decline of the Mean Time To Failure. A generic, low-overhead, resilient extension becomes a desired aptitude for any programming paradigm. This dissertation addresses these two critical issues, designing an efficient unified linear algebra development environment using a task-based runtime, and extending a task-based runtime with fault tolerant capabilities to build a generic framework providing both soft and hard error resilience to task-based programming paradigm. To bridge the gap between hardware peak performance and application perfor- mance, a unified programming model is designed to take advantage of a lightweight task-based runtime to manage the resource-specific workload, and to control the data ow and parallel execution of tasks. Under this unified development, linear algebra tasks are abstracted across different underlying heterogeneous resources, including multicore CPUs, GPUs and Intel Xeon Phi coprocessors. Performance portability is guaranteed and this programming model is adapted to a wide range of accelerators, supporting both shared and distributed-memory environments. To solve the resilient challenges on large scale systems, fault tolerant mechanisms are designed for a task-based runtime to protect applications against both soft and hard errors. For soft errors, three additions to a task-based runtime are explored. The first recovers the application by re-executing minimum number of tasks, the second logs intermediary data between tasks to minimize the necessary re-execution, while the last one takes advantage of algorithmic properties to recover the data without re- execution. For hard errors, we propose two generic approaches, which augment the data logging mechanism for soft errors. The first utilizes non-volatile storage device to save logged data, while the second saves local logged data on a remote node to protect against node failure. Experimental results have confirmed that our soft and hard error fault tolerant mechanisms exhibit the expected correctness and efficiency

    Distributed data structure for factored operating systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 151-158).Future computer architectures will likely exhibit increased parallelism through the addition of more processor cores. Architectural trends such as exponentially increasing parallelism and the possible lack of scalable shared memory motivate the reevaluation of operating system design. This thesis work takes place in the context of Factored Operating Systems which leverage distributed system ideas to increase the scalability of multicore processor operating systems. fos, a Factored Operating System, explores a new design point for operating systems where traditional low-level operating system services are fine-grain parallelized while internally only using explicit message passing for communication. fos factors an operating system first by system service and then further parallelizes inside of the system service by splitting the service into a fleet of server processes which communicate via messaging. Constructing parallel low-level operating system services which only internally use messaging is challenging because shared resources must be partitioned across servers and the services must provide scalable performance when met with uneven demand. To ease the construction of parallel fos system services, this thesis develops the dPool distributed data structure. The dPool data structure provides concurrent access to an unordered collection of elements by server processes within a fos fleet. Internal to a single dPool instance, all communication between different portions of a dPool is done via messaging. This thesis uses the dPool data structure within the parallel fos Physical Memory Allocation fleet and demonstrates that it is possible to use a dPool to manage shared state in a factored operating system's physical page allocator. This thesis begins by presenting the design of the prototype fos operating system. In the context of fos system service fleets, this thesis describes the dPool data structure, its design, different implementations, and interfaces. The dPool data structure is shown to achieve scalability across even and uneven micro-benchmark workloads. This thesis shows that common parallel and distributed programming techniques apply to the creation of dPool and that background threads within a dPool can increase performance. Finally, this thesis evaluates different dPool implementations and demonstrates that intelligently pushing elements between dPool parts can increase scalability.by David Wentzlaff.Ph.D
    • …
    corecore